문제은행 시스템은 피험자의 조건에 따라 데이터베이스에서 문항을 추출하여 가상공간에서 평가를 수행한다. 가상 공간에서의 평가는 피험자에게 적용하는 경우 출제 빈도에 따라 운항의 난이도 및 변별력에 영향을 주게 된다 출제 빈도에 따라 난이도나 변별력이 낮아지는 문항은 출제를 제한하는 기준이 필요하다. 본 논문에서는 문항 사후 난이도와 문항 변별도를 기반으로 하여, 문항 차분 난이도를 주기적으로 측정하고 난이도 차이가 일정 수준 이상이 되는 문항에 대해 출제를 제한하는 방안과 전체 피험자에 대한 운항의 변별력을 측정하러 변별력이 떨어지는 문항을 출제자에게 문항을 수정하게 하거나 삭제하도록 하는 방안들 제안한다.
본 논문은 치아의 모양, 크기 및 턱의 모양 등과 같은 치아의 기하학적인 특징들을 사용하여 치아의 성 변별시스템에 PCA기법과 LDA기법을 각각 적용하고 두 기법을 비교분석한다. PCA기법과 LDA기법은 생체인식을 위한 주요 매핑기법으로 알려져 있다. PCA분석 기법을 적용하여 성변별의 결과 76%의 인식률이 획득되었으며, LDA분석기법은 66%의 인식률이 획득되었다. 본 연구의 결과로부터 PCA기법은 치아의 성변별에 있어 LDA기법보다 우수한 성능을 제공함을 확인할 수 있었다.
본논문은 단종된 전송선과 개방된 전송선 및 2개의 결합저항기로 구성된 초광대역전송선형 FM변별기의 동적인 해석(dynamic analysis)을 취급하였다. 변별기의 출력파형의 Harmonic Distortion과 입력신호의 최대허용주파수변위와의 제관계를 Fourier transfrom으로 상세하게 해석하였다. 결합저항계수r(Fig 1 참조)는 변별기의 감도와 입력신호의 전주파수변위에 걸쳐 입력 Impedance가 일정하다는 견지에서 일로 놓아야 된다는 것이 판명되었다. 이론상으로는 100%의 주파수변위를 가진 FM신호라도 본변별기로 불과 2.6% Harmonic distortion으로 검파할 수 있으며 또한 검파시에 변별기의 입력 Impedance는 전종선의 특성 Impedance Z0로 일정하게 유지된다. 이론적인 결과를 뒷받침하기 위하여 실험결과를 첨부하였다. 본실험에서는 변별기의 특성곡선이 중심주파수 85.5Mc를 중심으로 40%의 주파수변위에 대하여 Linear하며, 또한 이때의 변별기의 입력 Impedance의 변화율은 이상치 Z0의 ±14% 이내이다.
본청문에서는 후리에 변환을 이용하여 단봉형복, 동조형형, Foster-Seely 형 및 Ratio 변별기의 동적해석을 하였다. 변별기의 출력파형의 디스토오숀과 FM 입력신호정수 및 변별기회로정수와의 제관계를 명시하였다. 복동조형, Foster-Seely 및 Ratio 형변별기에는 우수고조파는 존재하지 않으며 단봉형변별기에는 우수 및 기수고조파가 존재한다. 복동조형 변별기가 변별할 수 있는 주파수대역은 단봉형변별기의 주파수대역보다 10배이상 넓으며 Foster-Seely 및 Ratio 변별기의 것의 약 2배이다.
E-Learning 환경에서 학습자에게 보다 정확한 맞춤형 교육 시스템을 제공하기 위하여 평가 문항 및 학습 문항의 난이도, 변별도 등과 같은 문항 정보 활용이 필요하다. 본 논문에서는 문항 난이도, 변별도의 수치를 메타데이터에 저장하고, 평가 문항 및 학습 문항을 저작할 수 있는 템플릿(Templates) 및 GUI(Graphical User Interface) 기반의 SMIL(Synchronized Multimedia Integration Language) 저작도구를 설계 구현 하였다. 구현한 시스템은 SMIL 문법을 모르는 교수자가 문항 난이도, 변별도를 메타데이터에 저장하고, 학습 문항을 쉽게 저작하는데 효율적이다. 또한 저작된 문항은 XML(Extensible Markup Language) 기반 메타데이터를 활용함으로서 다른 플랫폼과의 통합 관리 및 재사용에 용이하다.
본 연구에서는 변동계수를 이용하여 DEA 모형의 변별력 평가에 적용할 수 있는 새로운 평가기준을 제시하였다. 변별력 평가를 위해 기존 연구에서 제시한 중요도와 본 연구에서 제안한 변동계수를 이용하여 변별력을 분석하였다. 다양한 DEA 모형들 중 변별력 평가를 위해 CCR-DEA, BCC-DEA, entropy, bootstrap, super efficiency, cross efficiency DEA 모형을 선정하고 실증분석을 실시하였다. 모형들의 순위상관관계를 파악하기 위해서 CCR 모형과 BCC 모형의 효율성 값과 entropy, bootstrap, super efficiency, cross efficiency 모형의 효율성 값들 간에 순위상관분석을 실시하였다. 본 연구를 통해 도출된 연구결과를 요약하면 다음과 같다. 첫째, 중요도와 변동계수를 이용한 모형들의 변별력 순위가 동일한 것으로 분석되어 변동계수를 DEA 모형의 변별력 평가기준으로 이용할 수 있다는 것이다. 둘째, 본 연구의 실증분석 결과에 따르면 4개 모형 중 super efficiency 모형이 변별력이 가장 높은 것으로 분석되었다. 셋째, CCR 모형과 순위상관관계가 가장 높은 모형은 super efficiency 모형으로 나타났고, BCC 모형과 순위상관관계가 가장 높은 모형도 super efficiency 모형으로 분석되었다.
본 연구에서는 토익 시험의 정답률과 변별도에 영향을 미치는 구조적인 요인이 무엇인지 분석하기 위하여 문항 분석에서 도출된 각 파트별 코퍼스 지표들을 분석하였다. 이를 위하여 모의 토익 시험의 정답률과 변별도에 대한 코퍼스 요인들의 회귀 분석을 실시하였고, 분석 결과는 다음과 같다. 정답률에 대해서는 기초산출치중에서 word_length, no_word_sentence1, sentence_length, 정합성 지표들 중에서는 LSA_overlap_adjacent_sentences, 어휘 다양성 지표들 중에서는 MTLD_VOCD, 접속사 지표들 중에서는 All_logical_causal_connectives_incidence, 상황모형 지표들 중에서는 casual_particles_causal_verbs_Ratio, 통사적복잡성 지표들 중에서는 Minimal_Edit_Distance1, Left_embeddedness, 통사적 패턴밀도 지표들 중에서는 Infinitive_density, Preposition_phrase_density 등이 음의 영향을 미치는 것으로 나타났다. 이러한 코퍼스 요인들은 토익의 정답률을 낮추는 효과가 있기 때문에 하위 레벨의 학습자들이 단기적인 학습효과를 향상시킬 수 있는 중요한 정보들을 제공해 줄 수 있을 것이다. 변별도에 대해서는 어휘 다양성 지표들 중에서 MTLD_VOCD, 접속사 지표들 중에서는 All_logical_causal_connectives_incidence, Additive_connectives_incidence, 통사적 패턴밀도 지표들 중에서는 Infinitive_density, 어휘정보 지표들 중에서는 person1_2_pronoun_incidence 등이 정의 영향을 미치는 것으로 나타났다. 이러한 코퍼스 요인들은 변별도 증가에 영향을 주기 때문에 영어 능력 하위 그룹에 필요한 학습 프로그램을 개발하는 데 있어서 활용될 수 있을 것이다.
본 연구에서는 쾌, 불쾌, 긴장, 이완의 네 가지 상상을 통해 감성의 변화를 유도하였고, 생리 신호 분석을 통해 감성의 변화를 변별하고자 하였다. 20명의 피험자를 대상으로 네 가지 상상을 각각 30초씩 수행하게 하면서 EEG, ECG, GSR, PPG, RSP, Skin-Temperature를 각각 측정하였고 측정 종료 후 주관적 평가를 실시하였따. 주관적 평가 분석 결과, 피험자는 뚜렷이 구별되는 네 가지 상상을 한 것으로 나타났고, 쾌도는 “쾌 > 이완, 긴장 > 불쾌” 상상 순서의 3단계로, 긴장도는 “긴장 > 불쾌, 쾌 > 이완” 상상 순서의 3단계로 뚜렷이 구별되었다. EEG 분석 결과에서는 쾌와 불쾌, 쾌와 이완 상상 사이에서만, 자율신경계 반응 역시 약 2.5 단계의 긴장도 감성 변별이 가능하여 정확한 3단계의 감성 변별에는 어려움이 있었다. 그러나 향후 비선형 분석법을 적용하고 피험자 수를 증가시킨다면 생리 신호 분석을 통한 감성 변별 민감도를 증가시킬 수 있을 것으로 사료된다. 본 연구로부터 쾌/불쾌와 긴장/이완의 2차원의 감성 영역의 각 축을 EEG와 자율신경계의 생리 신호를 통해 변별할 수 있다는 가능성을 확인하였다.
본 연구에서는 의사결정자의 사전정보가 필요하지 않은 DEA 모형들을 대상으로 변별력 평가를 실시하였다. 변별력 평가를 위한 DEA모형으로 Entropy 모형, Bootstrap 모형, Benevolent Cross Efficiency 모형, Aggressive Cross Efficiency 모형, Game Cross Efficiency 모형을 선정하였다. 변별력 평가척도인 변동계수(coefficient of variation)와 중요도(degree of importance) 평가기준을 이용하여 5개 DEA 모형의 변별력을 평가하였다. 평가결과에 따르면 변별력 순위는 2개 평가 지표 모두에서 Entropy 모형, Aggressive CE 모형, Benevolent CE 모형, Game CE 모형, Bootstrap 모형 순으로 평가되었다.
본 연구는 공감-체계화 유형, 얼굴제시영역, 정서유형에 따른 정서 인식과 정서 변별 간 관계를 알아보기 위하여 수행되었다. 실험 1에서는 개인의 공감-체계화 유형, 얼굴제시영역, 정서유형에 따라 정서 인식 정도가 어떻게 달라지는지 알아보았다. 그 결과 공감-체계화 유형에 따른 정서 인식 정도에는 유의미한 차이가 없었고, 얼굴제시영역과 정서유형에 따른 차이는 유의미하게 나타났다. 실험 2에서는 과제를 바꾸어 개인의 공감-체계화 유형, 얼굴제시영역, 정서유형에 따라 정서 변별 정도에 차이가 있는지 알아보았다. 그 결과 얼굴제시영역과 정서 유형에 따른 정서 변별 정도에 유의미한 차이가 있었다. 공감-체계화 유형과 정서유형 간 유의미한 상호작용이 있었는데, 기본정서에서는 공감-체계화 유형에 따른 변별 정도가 유의미한 차이를 보이지 않은 반면, 복합정서에서는 공감-체계화 유형 간 유의미한 차이를 보였다. 즉, 정서 인식과 달리 정서 변별에 있어서는 정서 유형에 따라 공감-체계화 유형 간 정확률에 차이가 나타났다. 이는 정서를 인식하는 것과 변별하는 것이 공감-체계화 유형에 따라 다르게 나타난다는 것을 보여준다. 본 연구를 통해 한 개인이 가지고 있는 공감하기와 체계화하기 특성, 얼굴제시영역, 정서유형이 정서인식과 정서 변별에 서로 다른 영향을 줄 수 있다는 것을 밝혔다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.