• Title/Summary/Keyword: 변동축력

Search Result 11, Processing Time 0.026 seconds

A Study about Behavior of Steel Column Members under Varying Axial Force (변동축력에 의한 철골기둥부재의 거동에 관한 연구)

  • Oh, Sang-Hoon;Oh, Young-Suk;Hong, Soon-Jo;Park, Hae-Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.179-188
    • /
    • 2011
  • The performance-based design is highlighted as an alternative for the current design method, which cannot definitely specify the performance level that a building requires. Research on it is already in progress, however, in developed countries like the United States and Japan, to establish the basis for a performance-based design. Many studies on such design are also being conducted in South Korea, but South Korea still lags behind other countries in all-around technology. On the other hand, the column members, especially the lower external column, are affected by the variation of the axial force by overturning the moments in the case of lateral loads by earthquake. Varying the axial force can affect the time of local buckling and the ultimate behavior. Thus, in this study, the structural performance, such as the time of local buckling and the ultimate behavior, was analyzed through an experimental study on column members under varying axial force. The feasibility of a domestic study proposing a performance level with a story drift angle formed about a structural-performance-based steel structure design was also verified.

A Study on the Shear Characteristic of├ Type Reinforced Concrete Joints under Cyclic Loading (반복하중을 받는 ├형 철근콘크리트 접합부의 전단특성에 관한 연구)

  • 이상호;이동화
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.73-82
    • /
    • 2001
  • 본 연구는 실험적 방법과 해석적 방법을 통하여 반복하중을 받는 ├형 철근콘크리트 접합부의 전단특성을 파악함을 목적으로 한다. ├형 접합부는 고강도 재료의 사용으로 인한 체적의 감소 뿐만 아니라, 지진발생 시 반복하중의 작용으로 인한 변동축력 등으로 , 구조적으로 취약한 부분이 될 가능성이 있다. 따라서 본 연구에서는 ├형 접합부의 전단특성을 파악하기 위하여 기동축력, 콘크리트 압축강도, 접합부 전단보강근비를 변수로 한 12개의 실험체를 제작하여 가력실험을 수행하였다. 또한, 유한요소 해석을 수행하여 본 실험결과와의 비교 검토를 통하여 타당성을 검토한 후, 기둥축력과 콘크리트 압축강도의 변화에 대한 변수해석을 통하여 접합부의 전단강도에 미치는 변수는 영향을 파악하였으며, 실험에 의한 실험체의 전단내력을 기존에 제안된 AIJ, ACI 규준 등과 비교 검토하였다. 본 연구의 결로부터 기둥축력과 콘크리트 압축강도가 ├형 철근콘크리트 접합부의 전단강도에 미치는 영향을 확인하였다.

  • PDF

Seismic Behavior of Columns in Ordinary and Intermediate Moment Frames (보통과 중간 모멘트 골조 기둥의 내진거동 비교)

  • Han Sailg-Whan
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.51-58
    • /
    • 2005
  • Moment frames have been widely used in building construction. In current design codes, concrete moment frames are classified into ordinary, intermediate, and special moment resisting concrete frames (OMRCF, IMRCF, SMRCF)). The objective of this study is to investigate the seismic behavior of columns in ordinary moment resisting concrete frames (OMRCF) and intermediate moment resisting concrete frames (IMRCF). For this purpose 3 story OMRCF and IMRCF buildings were designed and detailed in compliance to ACI 318 (2002) and KCI (1999). In this study the buildings were assumed to be located in seismic zone 1 classified by UBC (1997). This study considered the columns in the 1st story since these columns shall resist the largest axial and lateral forces during an earthquake. Eight 2/3 scale column specimens were made for representing the upper part and lower part of exterior and interior columns of the OMRCF and the IMRCF Quasi-static reversed cyclic loading was applied to each specimen with a constant or varying axial load. Test results show that seismic behaviors of columns are influenced by existence of lap splices, axial force levels, and lateral reinforcement at possible plastic hinging region. However, the effect of such variables strongly co-related to each other.

Shear Strength Prediction of Reinforced Concrete Members Subjected In Axial force using Transformation Angle Truss Model (변환각 트러스 모델에 의한 축력을 받는 철근콘크리트 부재의 전단강도 예측)

  • Kim Sang-Woo;Lee Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.813-822
    • /
    • 2004
  • For the prediction of the shear strength of reinforced concrete members subjected to axial force, this paper presents a truss model, Transformation Angle Truss Model (TATM), that can predict the shear behavior of reinforced concrete members subjected to combined actions of shear, axial force, and bending moment. In TATM, as axial compressive stress increases, crack angle decreases and concrete contribution due to the shear resistance of concrete along the crack direction increases in order to consider the effect of the axial force. To verify if the prediction results of TATM have an accuracy and reliability for the shear strength of reinforced concrete members subjected to axial forces, the shear test results of a total of 67 RC members subjected to axial force reported in the technical literatures were collected and compared with TATM and existing analytical models(MCFT RA-STM and FA-STM). As a result of comparing with experimental and theoretical results, the test results was better predicted by TATM with 0.94 in average value of $\tau_{test}/\tau_{ana}$. and $11.2\%$ in coefficient of variation than other truss models. And theoretical results obtained from TATM were not effect by steel capacity ratio, axial force, shear span-to-depth ratio, and compressive steel ratio.

Development of the Method for Inspecting the Clamping Force of Torque Shear Bolts Using the Electricity energy of Electric torque wrench (전동렌치 전기에너지를 이용한 토크쉬어볼트의 체결축력 검사기법 개발)

  • Lee, Hyeon-Ju;Nah, Hwan-Seon;Kim, Kang-Sik;Kim, Kang-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.162-170
    • /
    • 2010
  • The torque-coefficient of torque-shear type high-strength bolts is affected by the environmental factors, such as 'wet', 'rust', 'exposure to air' and workability during tightening high strength bolts. It is difficult to assume the direct tension induced into the bolt due to variation of torque-coefficient for torque-shear type high-strength bolts. Therefore, it is essential to measure tension loads of bolts and to verify the clamping force under construction. In this study, the manufacture of trial product was planned to identify the induced force into the bolts. The algorithm for a trial product was composed of the relation between electricity energy taken from torque shear wrench and tension force from hydraulic tension meter. The regression analysis equation to measure the direct tension was derived by statistical analysis using Minitab program. It is considered that the trial product is reliable tool to evaluate the tension force comparable to a commercial torque wrench.

A Case Study on Axial Forces of Cable-band Bolts in Domestic Suspension Bridge (국내 현수교량의 케이블 밴드볼트 축력관리 및 검토사례)

  • Park, Si-Hyun;Jung, Woo-Young;Kim, Hyun-Woo;You, Dong-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.1-7
    • /
    • 2018
  • Suspension bridge cables made of high strength steel wires require periodical maintenance in accordance with the axial force of cable-band bolts, since the bolts in suspension bridges can undergo tension decrease due to creep of cable wires, bolt relaxation, load fluctuation, and cable re-arrangement, etc. Consequently, this study is aimed at investigating and subsequently evaluating the critical factors with respect to the bolt tension-decrease phenomenon in SR suspension bridge in Korea, based on field monitoring, theoretical studies, and field record management works. From the observation, it is interesting to note that the decrease in the bolt tension force is typically accompanied by plastic deformation of the zinc plating layers in the cable wires. In addition, a framework corresponding to generic methodologies to characterize the deformation in terms of the bolt tension-decrease and long-term history management has been developed in this exploratory study.

Stability of CWR Tracks according to the Characteristics of the Probability Distribution of the Neutral Temperature (중립온도의 확률분포 특성에 따른 CWR 궤도의 안정성)

  • Bae, Hyun-Ung;Choi, Jin-Yu;Kim, Myoung-Su;Lee, Chin-Ok;Lim, Nam-Hyoung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.489-492
    • /
    • 2011
  • 장대레일 궤도의 부동구간에서 발생되는 과도한 축력은 혹서기 궤도의 좌굴을 유발시켜 주행하는 열차의 안정성을 위협할 수 있다. 궤도 제원을 제외한 압축응력과 관련된 레일온도 인자, 궤도 강성과 관련된 도상저항력, 궤도의 초기결함인 궤도틀림과 같은 인자들은 기후조건, 궤도 운영조건, 유지관리조건 등에 의해 임의적으로 변동되는 불확실성이 높은 궤도 매개변수이다. 그러므로 장대레일 궤도의 좌굴은 불확실성이 높은 현상임을 알 수 있다. 따라서 궤도 매개변수들의 불확실성 및 임의성을 합리적으로 고려하기 위해서는 확률론적 접근방법의 적용이 필수적이라 할 수 있다. 본 논문에서는 기존 본 연구진에 의해 개발된 장대레일 궤도의 좌굴확률 평가시스템을 이용하여 장대레일 축력을 산정하기 위한 필수요소인 중립온도의 확률분포 특성에 따른 좌굴 안정성을 분석하였다.

  • PDF

Seismic Performance Evaluation of Reinforced Concrete Columns Under Constant and Varying Axial Forces (일정 및 변동 축력을 받는 철근콘크리트 기둥의 내진성능 평가)

  • Lee, Do Hyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.59-65
    • /
    • 2024
  • This paper describes the seismic performance evaluation of reinforced concrete bridge columns under constant and varying axial forces. For this purpose, nine identical circular reinforced concrete columns were designed seismically by KIBSE (2021) and KCI (2021). A comparison of lateral forces with theoretical strength shows that the safety factor for columns under varying axial forces is less marginal than those under constant axial forces. In addition, columns under varying axial forces exhibit significant fluctuations in the hysteretic response due to continuously varying axial forces. This is particularly prominent when many varying axial force cycles within a specific lateral loading cycle increase. Moreover, the displacement ductility of columns under varying axial forces does not meet the code-specified required ductility in the range of varying axial forces. All varying axial forces affect columns' strength, stiffness, and displacement ductility. Therefore, axial force variation needs to be considered in the lateral strength evaluation of reinforced concrete bridge columns.

A Study on the Secure Plan of Clamping Force according to the Variation of Torque-Coefficient in Torque-Shear High Strength Bolts (토크전단형 고력볼트의 토크계수 변동에 따른 체결축력 확보방안에 관한 연구)

  • Lee, Hyeon-Ju;Nah, Hwan-Seon;Choi, Sung-Mo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.3
    • /
    • pp.8-16
    • /
    • 2014
  • Torque control method and turn of nut method are specified as clamping method of high strength bolts in the steel construction specifications. Quality control of torque coefficient is essential activity because torque control method, which is presently adopted as clamping method in domestic construction sites, is affected by variation of torque coefficient. The clamping of torque shear bolt is based on KS B 2819. It was misunderstood that the tension force of the TS bolt was induced generally at the break of pin-tail specified. However, the clamping forces on slip critical connections do not often meet the intended tension, as it considerably varies due to torque coefficient dependent on the environmental factors and temperature variables despite the break of the pin tail.This study was focused to evaluate the effect of environmental factors and errors of installing bolts during tightening high strength bolts. The environmental parameters were composed of 'wet' condition, 'rust' condition, 'only exposure to air' condition. And the manufacture of trial product was planned to identify the induced force into the bolts. The algorithm for a trial product was composed of the relation between electricity energy taken from torque shear wrench and tension force from hydraulic tension meter.

Buffeting Analysis for the Evaluation of Design Force for Temporal Supports of a Bundle Type Cable-stayed Bridge (번들 사장교 가설 구조물 설계력 산정을 위한 버페팅해석)

  • Lee, Ho;Park, Jin;Kim, Ho-Kyung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.645-654
    • /
    • 2011
  • Temporal supports is proposed for the large block construction of a double-deck truss girder of a bundle type cable-stayed bridge. The design force of the temporal bents cannot be evaluated by a conventional design procedure with gust factored static wind loads. The uplift forces in BS5400 also can not estimate the design forces of the temporal bents properly for the turbulent wind loads. A frequency-domain buffeting analysis is performed to evaluate the design forces of the temporal bents considering the interactions between the girder and temporal supports. Two cases of modeling are compared to estimate the stiffness contribution of temporal supports in determining design forces, i.e., an analysis model including temporal bents in the structural analysis modeling and an analysis model with fixed supports at the bent tops neglecting the stiffness of temporal bents. The consideration of bent stiffness usually generates smaller reaction forces than rigid support modeling. Consequently, the effectiveness and usefulness of the buffeting analysis procedure with full modeling of temporal supports are demonstrated for the design of a temporal bents of the construction of a bundle type cable-stayed bridge.