Buffeting Analysis for the Evaluation of Design Force for Temporal Supports of a Bundle Type Cable-stayed Bridge

번들 사장교 가설 구조물 설계력 산정을 위한 버페팅해석

  • 이호 (서울대학교 교량설계핵심기술연구단) ;
  • 박진 (서울대학교 건설환경공학부) ;
  • 김호경 (서울대학교 건설환경공학부)
  • Received : 2011.10.28
  • Accepted : 2011.11.21
  • Published : 2011.12.31

Abstract

Temporal supports is proposed for the large block construction of a double-deck truss girder of a bundle type cable-stayed bridge. The design force of the temporal bents cannot be evaluated by a conventional design procedure with gust factored static wind loads. The uplift forces in BS5400 also can not estimate the design forces of the temporal bents properly for the turbulent wind loads. A frequency-domain buffeting analysis is performed to evaluate the design forces of the temporal bents considering the interactions between the girder and temporal supports. Two cases of modeling are compared to estimate the stiffness contribution of temporal supports in determining design forces, i.e., an analysis model including temporal bents in the structural analysis modeling and an analysis model with fixed supports at the bent tops neglecting the stiffness of temporal bents. The consideration of bent stiffness usually generates smaller reaction forces than rigid support modeling. Consequently, the effectiveness and usefulness of the buffeting analysis procedure with full modeling of temporal supports are demonstrated for the design of a temporal bents of the construction of a bundle type cable-stayed bridge.

복층거더 번들형 사장교의 대블럭 가설 중 내풍안정성 확보를 위해 잭업바지 위에 임시벤트를 설치하여 가설 구조계를 지지하는 방안이 검토되었다. 일반적으로 거스트 계수를 곱한 정적 항력으로 임시벤트를 설계하는 경우 거더의 버페팅력에 의해 발생되는 임시벤트의 축력 변동성분을 고려할 수 없으며, 이는 일부 설계기준에 제시된 정적 상향 풍력으로도 평가할 수 없다. 유용한 해결 방안으로 주파수영역 버페팅해석을 수행하고 임시벤트에 작용하는 거더의 반력을 산정하였다. 우선 임시벤트를 해석 모델에 포함하고 거더와의 동적 상호작용을 엄밀히 반영하는 해석을 수행하였으며, 그 결과를 임시벤트가 거더를 받치는 고정 지지점으로 간주하여 해석한 경우의 결과와 비교 검토하였다. 임시벤트의 강성을 고려하는 경우 산정된 임시벤트와 거더 간 작용력은 임시벤트를 고정 지지점으로 간주하여 얻은 반력에 비하여 작은 값을 보였다. 따라서 대상교량의 가설 구조물 내풍설계를 수행하는 경우 임시벤트가 포함된 해석 모델링의 필요성과 버페팅해석을 통한 동적내풍 설계의 유용성을 제시하였다.

Keywords

References

  1. 대한토목학회 (2006) 케이블강교량설계지침.
  2. Chen, X.Z., Matsumoto, M., Kareem, A. (2000) Time Domain Flutter and Buffeting Response Analysis of Bridges, Journal of Engineering Mechanics, ASCE, 126(1), pp.7-16. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:1(7)
  3. Choi, S.W., Kim, H.K. (2008) Design of Aerodynamic Stabilizing Cables for a Cable-Stayed Bridge, Wind and Structures, 11(5), pp.391-411. https://doi.org/10.12989/was.2008.11.5.391
  4. Davenport, A.G. (1962) Buffeting of a Suspension Bridge by Storm Winds, Journal of Structural Division, ASCE,, 88(ST3), pp.233-268.
  5. Kim W.J., Cho K.S. (2005) The Design and Construction of Geogeum Grand Bridge, The third International Symposium and Steel Structures, Seoul, Korea.
  6. Ljung, L. (1999) System Identification: Theory for the User (2nd ed.), Prentice-Hall PTR, NEW Jersey p.609.
  7. Iwamoto, M., Fujino, Y. (1995) Identification of Flutter Derivatives of Bridge Deck from Free Vibration Data, Journal of Wind Engineering and Industrial Aerodynamics, 54/55, pp.55-63. https://doi.org/10.1016/0167-6105(94)00029-D
  8. Park, D.U., Kim, N.S., Kim, H.K. (2010) Damping Properties Identified from Wind-Induced Vibration Measurements of a Suspension Bridge, The Fifth International Conference on Bridge Maintenance, Safety and Management, Philadelphia, USA.
  9. Rogers, A.L., Rogers, J.W., Manwell, J.F. (2005) Comparison of the Performance of Four Measure- Correlate-Predict Algorithms, Journal of Wind Engineering and Industrial Aerodynamics, 93, pp.243-264. https://doi.org/10.1016/j.jweia.2004.12.002
  10. Scanlan, R.H. (1978) The Action of Flexible Bridge under Wind, II: Buffeting Theory, Journal of Sound and Vibration, 60(2), pp.201-211. https://doi.org/10.1016/S0022-460X(78)80029-7
  11. Simiu, E., Scalnlan, R.H. (1996) Wind Effects on Structures Third Edition, John Wiley & sons, New York, p.688.
  12. Xu, Y.L., Sun, D.K., Ko, J.M., Lin, J.H. (2000) Fully Coupled Buffeting Analysis of Tsing Ma Suspensin Bridge, Journal of Wind Engineering and Industrial Aerodynamics, 85(1), pp.97-117. https://doi.org/10.1016/S0167-6105(99)00133-6