• 제목/요약/키워드: 벡터 알고리즘

검색결과 1,841건 처리시간 0.03초

자화 인식 시스템에 관한 연구 (The Study for the Recognition System of Finger Languages)

  • 강민지;최은숙;손영선
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 추계 학술대회 학술발표 논문집
    • /
    • pp.151-154
    • /
    • 2003
  • 본 논문에서는 흑백 CCD 카메라를 이용하여 청각 장애인의 의사전달 수단인 지화 동작을 동영상으로 입력받아 인식하여, 편집 가능한 텍스트 문서로 변환하는 시스템을 구현하였다. 일련의 입력 영상들 중에서 흐린 영상과 선명한 영상의 구분은 영상의 잔상을 이용하였고, 촬영된 연속 영상들의 배열로부터 문자 자소를 구하고, 오토마타를 적용하여 완성된 문자를 문서 편집기에 출력시켰다 획득된 선명한 영상 데이터 중 변화가 심한 손목 부분을 제거한 후, 최대 원형 이동법을 이용하여 손의 무게 중심점을 구하고, 원형 패턴 벡터 알고리즘을 적용하여 지화 해석에 필요한 손을 인식하였다. 손 중심으로부터 거리 스펙트럼을 이용하여 지화 인식에 사용되는 손 모양의 특징 벡터를 추출하고, 퍼지추론을 적용하여 표준 패턴과 입력 패턴의 특징벡터를 비교, 지화 동작을 인식하였다.

  • PDF

슈퍼픽셀 기반의 그래프 컷을 이용한 객체 추적 (Visual Object Tracking Using Superpixel-Based Graph Cuts)

  • 이대연;김창수
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2013년도 하계학술대회
    • /
    • pp.64-65
    • /
    • 2013
  • 본 논문에서는 슈퍼픽셀(superpixel) 단위의 그래프 컷 알고리즘을 적용하여 객체 추적의 정확도를 향상시키기 위한 방법을 제안한다. 먼저 영상 분할 기법을 사용하여 입력 영상을 슈퍼픽셀로 분할하고 각 슈퍼픽셀에서 색상 히스토그램을 이용한 특성 벡터를 생성한다. 그리고 특성 벡터에 지지벡터기계(support vector machines)를 사용하여 각 슈퍼픽셀의 객체 확률 값을 추정한다. 객체 확률 값을 데이터 항(data term)으로, 이웃한 슈퍼픽셀 간의 특성 벡터 차 값을 스무드 항(smooth term)으로 하여, 그래프 컷(graph cuts) 알고리즘으로 슈퍼픽셀들을 객체와 배경으로 분류하고 객체 슈퍼픽셀을 최대한으로 포함하는 객체 윈도우를 찾는다. 실험 결과는 제안하는 기법이 기존 기법들보다 객체 추적 성능이 우수함을 보여준다.

  • PDF

셀기반 시그니쳐 트리: 고차원 데이터의 유사어 검색을 위한 효율적인 색인 구조 (Cell-based Signature Tree: Efficient Indexing Structures for Similarity Search in High-Dimensional Feature Space)

  • 송광택;장재우
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 봄 학술발표논문집 Vol.27 No.1 (B)
    • /
    • pp.134-136
    • /
    • 2000
  • 본 논문에서는 고차원의 특징 벡터 공간에서의 객체에 대한 효율적인 검색을 지원하는 셀기반 시그니쳐 트리 색인 구조(CS-트리, CI-트리)를 제안한다. 특징 벡터 공간을 셀로써 분할하고 특징 벡터는 셀의 시그니쳐로 표현되며 트리에 저장된다. 특징 벡터 대신 시그니쳐를 사용하여 트리의 깊이가 낮아짐으로서 검색을 효율적으로 수행할 수 있다. 또한 셀에 적합한 새로운 가지치기 거리를 이용한 유사성 검색 알고리즘으로 수행할 수 있다. 또한 셀에 적합한 새로운 가지치기 거리를 유사성 검색 알고리즘을 제시한다. 마지막으로 우수한 고차원 색인 기법으로 알려져 있는 X-트리와 성능 비교를 수행하여, 성능비교 결과 본 논문에서 제안하는 CS-트리와 CI-트리가 검색 시간 측면에서 최대 30%의 검색 성능이 개선됨을 보인다.

  • PDF

퍼지 제어 기법을 이용한 FCM 기반 RBF 네트워크 (FCM-based RBF Network Using Fuzzy Control Method)

  • 김태형;박충식;김광백
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2008년도 제38차 하계학술발표논문집 16권1호
    • /
    • pp.149-154
    • /
    • 2008
  • FCM 기반 RBF 네트워크는 서로 다른 학습 구조가 결합된 혼합형 모델로서, 입력층과 중간층의 학습 구조는 FCM 알고리즘을 적용하고, 중간층과 출력층 사이의 학습 구조는 Max_Min 신경망을 적용한다. 입력층과 중간층의 학습시 입력벡터와 중간층의 노드중에서 중심과 입력벡터간의 가장 가까운 노드를 승자 노드로 선택하여 출력층으로 전달한다. 그리고 중간층과 출력층 사이의 학습 구조는 Max_Min 신경망을 적용하여 중간층의 승자 뉴런이 출력층의 입력벡터로 적용한다. 하지만 많은 패턴이 입력벡터로 제시될 경우 학습 성능이 저하되는 단점이 있다. 따라서 본 논문에서는 중간층과 출력층의 학습 구조인 Max_Min 알고리즘의 학습 성능을 개선시키기 위해 퍼지 제어시스템을 이용하여 학습률을 동적으로 조정하는 퍼지 제어 기법을 이용한 FCM 기반 RBF 네트워크를 제안한다. 제안된 방법의 학습 성능을 평가하기 위하여 컨테이너 영상에서 추출한 숫자, 영문 식별자를 학습 데이터로 적용한 결과, 기존의 ART2 기반 RBF 네트워크보다 학습 시간이 적게 소요되고, 학습의 수렴성이 개선된 것을 확인하였다.

  • PDF

손실된 매크로 블록의 움직임 벡터 복원에 관한 연구 (A Study on Motion Vector Recovery of Loss Macroblock)

  • 김용우;서덕원;곽훈성
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2006년도 추계학술발표대회
    • /
    • pp.133-136
    • /
    • 2006
  • 제안한 방법은 H.264 옵티컬 플로워 방법을 이용하여 손실된 매크로블록의 움직임 벡터를 $4{\times}4$ 단위로 복원하는 알고리즘을 제안했다. 제안하는 알고리즘은 옵티컬 플로워 기반의 움직임벡터 복원 기법에서의 문제점인 높은 복잡도를 해결하기 위해서 최소 $4{\times}4$ 단위에서의 움직임 벡터 정보를 포함하는 H.264 부호화 표준의 특성을 이용하여 정확한 초기값에서 출발함으로써 계산량을 줄임과 동시에 Optical Flow Region을 4개의 $16{\times}16$ 크기로 제한함으로써 기존보다 복잡도를 크게 줄일 수 있었다.

  • PDF

초음파 영상의 통계적 특징 벡터를 활용한 지방간 분석 알고리즘 (Novel Analysis Algorithm of Fatty Liver using statistical feature vector from Ultrasound image)

  • 하수희;유재천
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.556-558
    • /
    • 2019
  • 기존 초음파 지방간 분석은 Hepatorenal sonographic index(HI)를 사용하여 지방간을 진단하여 왔다. 이러한 HI 기법에서는 Hepato(간)과 Renal(신장), 두 부분의 영상데이터를 비교 활용하였다면, 본 논문에서는 신장의 영상데이터만을 이용하여, 이의 통계적 특징 벡터만을 활용하여 지방간을 진단을 함으로서 기존의 HI기반 분석대비 편리성과 정확도를 개선코자 Kidney Index(KI) 기반의 분석 기법을 제안한다. 본 논문에서 제안된 KI는 정상간과 지방간을 가진 실제 환자의 초음파 사진(정상간, 지방간 각 30명)을 학습 데이터를 구성하고, 이들 데이터군으로부터 특징 벡터들을 선별하여 머신러닝 기법 중 서포트 벡터 머신(Support Vector Machine)을 통해 학습시켜, 제안된 알고리즘의 유효성을 입증하였다.

움직임 벡터 추정을 위한 새로운 빠른 알고리즘 (New Fast Algorithm for the Estimation of Motion Vectors)

  • 정수목
    • 한국컴퓨터산업학회논문지
    • /
    • 제5권2호
    • /
    • pp.275-280
    • /
    • 2004
  • 본 논문에서는 움직임 벡터(motion vector)를 추정하는 새로운 고속 알고리즘을 제안하였다. 제안된 알고리즘은 블록 합 피라미드 알고리즘의 움직임 추정 정확도를 유지하면서 연산량을 감소시키기 위하여 Efficient Multilevel Successive Elimination Algorithm의 diamond mesh기법을 개선한 후, 탐색점에서의 MAD추정기법을 적용하여 블록 합 피라미드 알고리즘에 적용한 것이다. 실험을 통하여 제안된 기법이 블록 합 피라미드 알고리즘의 연산량을 효과적으로 줄일 수 있음을 확인하였다.

  • PDF

악성코드 탐지를 위한 기계학습 알고리즘의 성능 비교 (Performance Comparison of Machine Learning Algorithms for Malware Detection)

  • 이현종;허재혁;황두성
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2018년도 제57차 동계학술대회논문집 26권1호
    • /
    • pp.143-146
    • /
    • 2018
  • 서명기반 악성코드 탐지는 악성 파일의 고유 해싱 값을 사용하거나 패턴화된 공격 규칙을 이용하므로, 변형된 악성코드 탐지에 취약한 단점이 있다. 기계 학습을 적용한 악성코드 탐지는 이러한 취약점을 극복할 수 있는 방안으로 인식되고 있다. 본 논문은 정적 분석으로 n-gram과 API 특징점을 추출해 특징 벡터로 구성하여 XGBoost, k-최근접 이웃 알고리즘, 지지 벡터 기기, 신경망 알고리즘, 심층 학습 알고리즘의 일반화 성능을 비교한다. 실험 결과로 XGBoost가 일반화 성능이 99%로 가장 우수했으며 k-최근접 이웃 알고리즘이 학습 시간이 가장 적게 소요됐다. 일반화 성능과 시간 복잡도 측면에서 XGBoost가 비교 대상 알고리즘에 비해 우수한 성능을 보였다.

  • PDF

스켈레톤 벡터 정보와 RNN 학습을 이용한 행동인식 알고리즘 (Using Skeleton Vector Information and RNN Learning Behavior Recognition Algorithm)

  • 김미경;차의영
    • 방송공학회논문지
    • /
    • 제23권5호
    • /
    • pp.598-605
    • /
    • 2018
  • 행동 인식은 데이터를 통해 인간의 행동을 인식하는 기술로서 비디오 감시 시스템을 통한 위험 행동과 같은 어플리케이션에 활용되어 질 수 있다. 기존의 행동 인식 알고리즘은 2차원 카메라를 통한 영상이나 다중모드 센서, 멀티 뷰와 같은 장비를 이용한 방법을 사용하거나 3D 장비를 이용하여 이루어져 왔다. 2차원 데이터를 사용한 경우 3차원 공간의 행위 인식에서는 가려짐과 같은 현상으로 낮은 인식율을 보였고 다른 방법은 복잡한 장비의 구성이나 고가의 추가적인 장비로 인한 어려움이 많았다. 본 논문은 RGB와 Depth 정보만을 이용하여 추가적인 장비 없이 CCTV 영상만으로 인간의 행동을 인식하는 방법을 제안한다. 먼저 RGB 영상에서 스켈레톤 추출 알고리즘을 적용하여 관절과 신체부위의 포인트를 추출한다. 이를 식을 적용하여 변위 벡터와 관계 벡터를 포함한 벡터로 변형한 후 RNN 모델을 통하여 연속된 벡터 데이터를 학습한다. 학습된 모델을 다양한 데이터 세트에 적용하여 행동 인식 정확도를 확인한 결과 2차원 정보만으로 3차원 정보를 이용한 기존의 알고리즘과 유사한 성능을 입증할 수 있었다.

원격탐사 자료를 이용한 지형변화 관측을 위한 변화벡터법 적용연구 (Application of Change Vector Analysis for Monitoring Geomorphological Change Using Remote Sensing Data)

  • 원중선;유홍룡
    • 자원환경지질
    • /
    • 제28권4호
    • /
    • pp.405-414
    • /
    • 1995
  • LANDSAT TM 자료를 이용한 지형변화를 관측하는데 알맞은 알고리즘에 대한 고찰과 이 알고리즘을 1986년 4월 15일과 1992년 9월 22일 경기만에서 얻어진 LANDSAT TM 자료에 적용하여 타당성을 시험하였다. 이 알고리즘은 변화벡터분석법과 tasseled cap 변환을 이용한 방법이다. 변화벡터분석법은 영상자료간의 변화를 관측하는데는 우수하지만 그 변화벡터의 수가 증가함에 따라 효율이 감소하는 단점이 있다. 이와 같은 단점을 보완하기 위해 tasseled cap 변환을 이용함으로서 원래 6개 밴드의 LANDSAT TM 자료를 두 개의 밴드 즉 Brightness와 Greenness로 줄일 수 있게 된다. 시험적용 결과 이 알고리즘은 해안선 일대에서의 대규모 지형변화뿐만 아니라 육안관측으로는 어려운 미세한 변화까지도 관측 가능한 것으로 나타났다. 그러나 본 연구결과의 변화벡터 영상에서는 인공적인 변화에 더 민감한 것으로 나타났는데 이는 본 연구에 사용된 두 LANDSAT TM 자료가 얻어진 시간 간격이 지질학적 작용에 의한 변화가 나타나기에는 비교적 짧기 때문인 것으로 사료된다.

  • PDF