• Title/Summary/Keyword: 벡터망

Search Result 506, Processing Time 0.023 seconds

Performance Evaluation of Clustering Methods of Feature Vectors in Vehicle Plate Recognition Systems based on Modular Neural Network (모듈라 신경망에 기반한 번호판 인식시스템의 특징벡터 클러스터링 방법에 따른 성능평가)

  • 박창석;김병만;서병훈;이광호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.313-315
    • /
    • 2003
  • 분할 및 합병 개념에 바탕을 둔 모듈라 신경망이 자동차 번호판 문자 인식에서 단일 신경망 사용 보다 학습 질 측면이나 학습 속도 면에서 좋은 결과를 보였다. 본 논문에서는 번호판 인식을 위한 모듈라 신경망 구성 시, 특징 벡터 클러스터링 방법에 따른 모듈라 신경망의 성능을 평가하였다. K-means Clustering 알고리즘을 이용하여 유사한 특징 벡터를 그룹핑하는 방법과 본 논문에서 제안한 알고리즘을 사용하여 유사하지 않는 특징 벡터들을 그룹핑하는 방법 각각을 구현하여 실험하였다. 실험결과, 유사하지 않는 특징 벡터들로 모듈라 신경망을 구성할 경우가 그렇지 않은 경우보다 좋은 인식 결과를 보였다.

  • PDF

Emotion Recognition Using Template Vector and Neural-Network (형판 벡터와 신경망을 이용한 감성인식)

  • 오재흥;이상윤;주영훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.325-328
    • /
    • 2002
  • 본 논문에서는 사람의 식별과 감정을 인식하기 위한 하나의 방법을 제안한다. 제안된 방법은 색차 정보에 의한 형판의 위치 인식과 형판 벡터 추출에 기반한다. 단일 색차 공간만을 이용할 경우 살색 영역을 정확히 추출하기 힘들다. 이를 보완하기 위해서 여러 가지 색차 공간을 병행하여 살색 영역을 추출하며, 이를 응용하여 각각의 형판을 추출하는 방법을 제안한다. 그리고, 사람의 식별과 감정 인식을 위해서 추출된 형판에 대한 각각의 특징 벡터 추출 방법을 제시하며, 마지막으로 추출된 형판 벡터를 이용하여 신경망을 통한 학습과 인식을 수행하는 방법을 제시한다.

Analysis over Extracting Physical Referring Expressions by Recursive Application over Neural Network (물리적 지시 표현 추출 및 처리를 위한 신경망의 재귀적 사용에 대한 고찰)

  • Koo, Sangjun;Lee, Kyusong;Lee, Gary Geunbae
    • Annual Conference on Human and Language Technology
    • /
    • 2012.10a
    • /
    • pp.142-147
    • /
    • 2012
  • 본 논문에서는 신경망을 재귀적으로 사용하여 문장에서 지시 표현을 추출하고 분석하는 방법에 대해서 제안한다. 임의의 문장이 들어올 때, 문장을 구성하는 각 단어들은 통사론적 자질 벡터와 의미론적 자질 벡터로 나눌 수 있다. 이들 벡터들의 쌍을 인자로써 입력받는 신경망 구조를 제시할 수 있으며, 신경망의 출력 결과는 다시 재귀적으로 쌍인자 신경망에 입력으로써 주입된다. 신경망을 재귀적으로 학습시킴으로써, 문장 내의 지시 표현을 추출할 수 있다. 쌍인자 신경망 파싱 모델의 성능을 측정했고, 제안한 모델의 문제점과 가능성에 대해서 관찰하였다.

  • PDF

Motion Search Region Prediction using Neural Network Vector Quantization (신경 회로망 벡터 양자화를 이용한 움직임 탐색 영역의 예측)

  • Ryu, Dae-Hyun;Kim, Jae-Chang
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.1
    • /
    • pp.161-169
    • /
    • 1996
  • This paper presents a new search region prediction method using vector quantization for the motion estimation. We find motion vectors using the full search BMA from two successive frame images first. Then the motion vectors are used for training a codebook. The trained codebook is the predicted search region. We used the unsupervised neural network for VQ encoding and codebook design. A major advantage of formulating VQ as neural networks is that the large number of adaptive training algorithm that are used for neural networks can be applied to VQ. The proposed method reduces the computation and reduce the bits required to represent the motion vectors because of the smaller search points. The computer simulation results show the increased PSNR as compared with the other block matching algorithms.

  • PDF

Word Vectorization Method Based on Bag of Characters (Bag of Characters를 응용한 단어의 벡터 표현 생성 방법)

  • Lee, Chanhee;Lee, Seolhwa;Lim, Heuiseok
    • Proceedings of The KACE
    • /
    • 2017.08a
    • /
    • pp.47-49
    • /
    • 2017
  • 인공 신경망 기반 자연어 처리 시스템들에서 단어를 벡터로 변환할 때, 크게 색인 및 순람표를 이용하는 방법과 합성곱 신경망이나 회귀 신경망을 이용하는 방법이 있다. 이 때, 전자의 방법을 사용하려면 시스템이 수용 가능한 어휘집이 정의되어 있어야 하며 새로운 단어를 어휘집에 추가하기 어렵다. 반면 후자의 방법을 사용하면 단어를 구성하는 문자들을 바탕으로 벡터 표현을 생성하기 때문에 어휘집이 필요하지 않지만, 추가적인 인공 신경망 구조가 필요하기 때문에 모델의 복잡도와 파라미터의 수가 증가한다는 단점이 있다. 본 연구에서는 위 두 방법의 한계를 극복하고자 Bag of Characters를 응용하여 단어를 구성하는 문자들의 집합을 바탕으로 벡터 표현을 생성하는 방법을 제안한다. 제안된 방법은 문자를 기반으로 동작하기 때문에 어휘집을 정의할 필요가 없으며, 인공 신경망 구조가 사용되지 않기 때문에 시스템의 복잡도도 증가시키지 않는다. 또한, 단어의 벡터 표현에 단어를 구성하는 문자들의 정보가 반영되기 때문에 Out-Of-Vocabulary 단어에 대한 성능도 어휘집을 사용하는 방법보다 우수할 것으로 기대된다.

  • PDF

Fast Support Vector Classification based on Artificial Neural Networks (신경망을 이용한 빠른 서포트 벡터 분류)

  • Kim, Kwang-In
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.604-606
    • /
    • 2004
  • 본 논문에서는 빠른 서포트 벡터 분류를 위해 신경망을 사용하는 방법을 제안한다. 주어 진 학습 데이터를 통해 낮은 학습 오류를 가지는 다단계 신경망을 얻으면 출력층을 제외한 은닉층은 주어진 문제를 선형분리 가능하게 하는 특징 추출기로 간주할 수 있다. 많은 계산시간을 요하는 키널 맵 대신 이를 사용해서 빠른 서포트 벡터 분류를 가능하게 하였다.

  • PDF

Neural network based Object segmentation and optical flow estimation using spatial feature (공간적 특징을 이용한 신경 회로망 기반 객체 분할 및 움직임 예측)

  • 김형진;이동규;이두수
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.837-840
    • /
    • 2000
  • 동영상에서 움직이는 객체 분할 및 모션 예측을 동시에 수행할 수 있는 연구는 다양한 방법으로 시도 되어 왔다. 실제 이미지를 서로 다른 움직임이나 서로 다른 공간적인 특정 영역으로 분리 될 수 있다고 가정 한다면 복수의 객체 또는 객체의 움직임으로 표현 할 수 있다. 객체 분할 측면에서 볼 때 효율적인 분할을 위해서는 특징 입력 벡터의 선택이 중요한 변수로 작용한다. 본 연구에서는 정밀한 객체 분할을 위해 밝기, 질감(Texture) 정보와 같은 정지영상의 특징 입력 벡터와 움직임 벡터 같은 동영상의 특징 입력 벡터를 동시에 사용한다. 분리된 객체는 각각의 클래스를 구성하게 되고 이를 위한 클래스 분류기로서 Median Radial Basis 신경 회로망을 사용한다. 객체 분할과 움직임 예측을 위해서 확률적 방법을 통한 에너지 함수를 구하고 비용함수를 도입한다. 신경 회로망의 각 Basis 함수는 영상의 특정한 영역에서 활성화되며 객체의 분류를 위해 신경 회로망 출력으로 가중치의 합으로서 나타나게 된다.

  • PDF

A Study on Channel Compensation Algorithm for Robust Speaker Recognition (화자인식 성능 향상을 위한 채널 보상 알고리즘에 관한 연구)

  • Kim Jung Ho;Jung Hui Seok;Kang Chul Ho
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.131-134
    • /
    • 2002
  • 화자 확인시스템에서 화자 변이, 잡음환경, 그리고 학습환경과 인식환경의 불일치등이 화자확인에 어려움을 가져다 준다. 본 논문에서는 유무선 전화망에서 화자 확인의 성능을 개선하기 위한 채널 보상 알고리즘을 제안한다. 화자 확인시스템에서 유무선 전화망의 채널 왜곡을 보상하기 위한 방법으로 RBF(Radial Basis Function) 신경망을 이용하여 특징 벡터를 사상하는 알고리즘을 이용하며 유선과 무선의 채널 왜곡을 감소시킨다. 동일한 화자의 유무선의 벡터 영역이 서로 다르므로 등록단계에서 RBF 신경망을 사용하여 화자의 특징 벡터를 유선과 무선의 비슷한 벡터 영역으로 사상하고, 인식단계에서는 유무선의 우도비를 비교하여 결정규칙에 의해 판별한다. 켑스트럼 평균 차감법(CMS) 보다 제안한 채널 보상 알고리즘이 인식율이 향상을 실험에 의해 확인하였다.

  • PDF

A Neural-like Algorithm to Compute One-Sided Inverse of III-Conditioned Matrices (III-Conditioned 정방행렬의 단측 역행렬 산출용 유사 인공신경망 알고리듬)

  • 문병수;양성운;김영택
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.321-323
    • /
    • 1998
  • 이 논문에서는 크기가 큰 III-Conditioned Matrices 정방행렬의 좌측 또는 우측 역행렬 계산시 계산상의 정확도를 향상시키는 알고리듬에 대하여 기술한다. 이 알고리듬은 대상 행렬의 행벡터들을 Input으로 하고 해당 Input 벡터가 몇번째 행 벡터인지를 나타내는 단위 벡터를 Target 벡터로 하며 초기 Weight 값으로 Pivoting을 겸한 Gauss소거법을 적용하여 얻은 역행렬을 사용하는 Single Layer 인공신경망에 적용하는 역전파 알고리듬과 흡사한 것이다. 각각의 Input 행 벡터에 대하여 역행렬의 열 벡터들이 점진적으로 직교가 되거나 평행이 되도록 근접시키므로써 모든 Input 행 벡터들이 열벡터들에 비교적 균일하게 직교 또는 평행이 되도록 학습시키는 알고리듬이다.

  • PDF

Vector2graph : A Vector-to-Graph Conversion Framework for Explainable Deep Natural Language Understanding (심층신경망 언어이해에서의 벡터-그래프 변환 방법을 통한 설명가능성 확보에 대한 연구)

  • Hu, Se-Hun;Jung, Sangkeun
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.427-432
    • /
    • 2020
  • 딥러닝(Deep-learning) 기반의 자연어 이해(Natural Language Understanding) 기술들은 최근에 상당한 성과를 성취했다. 하지만 딥러닝 기반의 자연어 이해 기술들은 내적인 동작들과 결정에 대한 근거를 설명하기 어렵다. 본 논문에서는 벡터를 그래프로 변환함으로써 신경망의 내적인 의미 표현들을 설명할 수 있도록 한다. 먼저 인간과 기계 모두가 이해 가능한 표현방법의 하나로 그래프를 주요 표현방법으로 선택하였다. 또한 그래프의 구성요소인 노드(Node) 및 엣지(Edge)의 결정을 위한 Element-Importance Inverse-Semantic-Importance(EI-ISI) 점수와 Element-Element-Correlation(EEC) 점수를 심층신경망의 훈련방법 중 하나인 드랍아웃(Dropout)을 통해 계산하는 방법을 제안한다. 다양한 실험들을 통해, 본 연구에서 제안한 벡터-그래프(Vector2graph) 변환 프레임워크가 성공적으로 벡터의 의미정보를 유지하면서도, 설명 가능한 그래프를 생성함을 보인다. 더불어, 그래프 기반의 새로운 시각화 방법을 소개한다.

  • PDF