• 제목/요약/키워드: 베이지안 확률통계

검색결과 71건 처리시간 0.016초

확률난수를 이용한 공간자료가 생성과 베이지안 분석 (Computing Methods for Generating Spatial Random Variable and Analyzing Bayesian Model)

  • 이윤동
    • 응용통계연구
    • /
    • 제14권2호
    • /
    • pp.379-391
    • /
    • 2001
  • 본 연구에서는 관심거리가 되고 있는 마코프인쇄 몬테칼로(Markov Chain Monte Carlo, MCMC)방법에 근거한 공간 확률난수 (spatial random variate)생성법과 깁스표본추출법(Gibbs sampling)에 의한 베이지안 분석 방법에 대한 기술적 사항들에 관하여 검토하였다. 먼저 기본적인 확률난수 생성법과 관련된 사항을 살펴보고, 다음으로 조건부명시법(conditional specification)을 이용한 공간 확률난수 생성법을 예를 들어 살펴보기로한다. 다음으로는 이렇게 생성된 공간자료를 분석하기 위하여 깁스표본추출법을 이용한 베이지안 사후분포를 구하는 방법을 살펴보았다.

  • PDF

베이지안 방법에 의한 K개 지수분포 모수들의 기하평균 추정에 관한 연구

  • 김대황;김혜중
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.169-174
    • /
    • 2002
  • 본 연구는 k개 지수분포 모수들의 기하평균에 대한 베이지안추정 방법을 제시하였다. 이를 위해 Tibshirani가 제안한 직교변환법으로 비정보적 사전확률분포를 도출하여 모수들의 결합사후확률분포를 유도해 내었으며, 이 분포 하에서 가중 몬테칼로 방법을 사용하여 기하평균을 추정하는 절차를 제안하였다. 모의실험과 실제자료의 예를 통해 제안된 베이지안 추정의 유효성 및 효용성을 보였으며, 본 연구에서 제안한 사전확률분포가 전통적인 포함확률을 기준으로 볼 때, Jeffrey의 사전확률분포 보다 더 유효한 추정을 함을 보였다.

  • PDF

왜 베이지안 인가?

  • 이군희
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.69-73
    • /
    • 2002
  • 본 발표에서는 베이지안이 생각하는 확률의 개념을 상호교환성(exchangeability)의 가정아래 어떻게 확장되어 해석되는지를 소개하고, 빈도학자들의 접근방법과 비교함으로서 베이지안에서 생각하는 확률이 어떠한 특징을 가지고 있는지를 설명하고자 하였다. 또한 Efron에 의하여 지적된 베이지안의 네 가지 문제점에 대하여 논의하고 특별히 과학적 객관성(scientific objectivism)의 한계점과 이러한 한계점을 베이지안에서 어떻게 해결하고 있는지에 대하여 논의하였다. 일반적으로 과학적 객관성에 대한 한계점은 빈도학자들의 방법론에서도 존재하게 된다. 즉, 연구자가 가설을 설정하고 이에 맞는 실험설계를 하고 유의수준을 설정하고 p값을 이용하여 의사결정을 내리는 모든 단계에서 연구자의 주관성이 들어갈 수밖에 없게 된다는 것이다. 베이지안 방법론에서는 이러한 비객관적인 체계를 인정하고 파악하여 사전확률(prior)에 포함시킴으로서 이를 객관적인 자료인 가능도함수(likelihood function)와 혼합하여 추론이나 의사결정을 진행하게 된다. 마지막으로 베이지안 학자들의 최근 객관적인 사전확률에 대한 다양한 형태의 연구를 소개하는 것으로 발표를 마무리하고자 한다.

  • PDF

생물/보건/의학 연구를 위한 비모수 베이지안 통계모형 (Nonparametric Bayesian Statistical Models in Biomedical Research)

  • 노희상;박진수;심규석;유재은;정연승
    • 응용통계연구
    • /
    • 제27권6호
    • /
    • pp.867-889
    • /
    • 2014
  • 비모수 베이지안 통계 모형은 그 유연성과 계산의 편리성으로 인해 최근 다양한 분야에서 응용되고 있는데, 본 논문에서는 생물/의학/보건 연구에서 사용되는 비모수 베이지안 통계 모형에 대해서 개괄하였다. 본 논문에서는 비모수 베이지안 통계 모델링에서 핵심적으로 사용되는 확률모형들을 소개하고, 다양한 예제들을 통하여 그 모형들이 어떻게 사용되는지 이해를 돕도록 하였다. 특별히, 논의된 예제들은 모수적 통계 모형으로 고찰하기에는 한계가 있는 연구가설들을 포함하고 있어 모수적 모형의 한계점을 지적하고 비모수적 베이지안 모형의 필요성을 강조하는 것들로 정하였다. 크게 확률밀도함수 추정, 군집분석, 임의효과 분포의 추정, 그리고 회귀분석의 4가지 주제로 분류하여 살펴보았다.

부분 베이즈요인을 이용한 K개로 로그정규분포의 상등에 관한 베이지안 다중검정 (Bayesian Testing for the Equality of K-Lognormal Populations)

  • 문경애;김달호
    • 응용통계연구
    • /
    • 제14권2호
    • /
    • pp.449-462
    • /
    • 2001
  • 베이지안 다중 검정방법(multiple hypothesis test)은 여러 통계모형에서 성공적인 결과를 주는 것으로 알려져있다. 일반적으로, 베이지안 가설검정은 고려중인 모형에 대한 사후확률을 계산하여 가장 높은 확률은 갖는 모형을 선택하기 때문에 귀무가설의 기각여부에만 관심을 가지는 고전적인 분산분석 검정과는 달리 좀 더 구체적인 모형을 선택할 수 있는 장점이 있다. 이 논문에서는 독립이면서 로그정규분포를 따르는 K($\geq$3)개 모집단의 모수에 대한 가설 검정방법으로 O’Hagan(1995)이 제안한 부분 베이즈 요인을 이용한 베이지안 방법을 제안한다. 이 때 모수에 대한 사전분포로는 무정보적 사전분포를 사용한다. 제안한 검정 방법의 유용성을 알아보기 위하여 실제 자료의 분석과 모의 실험을 이용하여 고전적인 검정방법과 그 결과를 비교한다.

  • PDF

Understanding Bayesian Statistics

  • 정윤식
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.61-68
    • /
    • 2002
  • 통계학은 불확실성(uncertainty)에 대한 연구이다. 베이지안 통계 방법은 불확실성 아래서 통계 추론과 의사 결정 모두를 위한 완전한(complete) 패러다임을 제공한다. 베이지안 방법론은 합리적인 초기 정보와 결합하는 것을 가능하게 만들고, 전통적인 통계적 방법론에 의하여 직면하는 많은 어려움들을 풀 수 있는 coherent 방법론을 제공하면서 엄격한 수학적 기본에 근거하고 있다. 베이지안 패러다임은 일반적인 용어로써 확률이란 단어의 사용을 가장 잘 어울리게 하는 불확실성의 조건부 측도(conditional measure of uncertainty)로써 확률의 해석에 근거한다. 관심있는 것에 대한 통계적 추론은 증거의 관점에서 그 값에 대한 불확실성의 변형으로써 묘사되며, 베이즈 정리(Bayes' theorem)는 이러한 변형이 어떻게 만들어지는 가를 자세히 설명할 수 있다. 베이지안 방법들은 전통적인 통계적 방법론에 접근할 없는 복잡하고, 다양한 구조적 문제들에 응용할 수 있다.

  • PDF

베이지안 실험계획법의 이해와 응용 (Understanding Bayesian Experimental Design with Its Applications)

  • 이군희
    • 응용통계연구
    • /
    • 제27권6호
    • /
    • pp.1029-1038
    • /
    • 2014
  • 본 연구에서는 베이지안 실험계획법에 대하여 논의하고 간단한 모의실험을 통하여 최적화된 베이지안 실험계획법이 어떠한 특징을 가지고 있는지 설명하였다. 실험을 설계하는 경우 연구자는 관심있는 주제가 모수추정인지 아니면 예측인지를 결정하고 사전확률과 우도함수를 기반으로 이에 맞는 사후확률을 찾아 효용함수와 결합하여 최적의 실험설계를 찾는 것이 베이지안 실험계획법의 기본 원리이다. 만일 사전적 정보가 존재하지 않는다면 무정보적 부적합 사전확률을 이용하여 실험을 설계할 수 있으며, 이는 비 베이지안적 접근방법과 일치하게 된다. 만일 모수나 예측값에 대한 사전적 정보가 존재하는 경우에는 베이지안 실험계획법이 유일한 해결 방법이다. 하지만 모형의 복잡도가 증가하게 되면, 최적해를 찾는 과정이 매우 복잡해져서 극복해야 하는 많은 문제점들이 존재하므로 향후 많은 연구가 필요한 분야이다.

무관질문형 다지확률응답모형에서의 베이즈 선형추정량에 관한 연구 (A Bayes Linear Estimator for Multi-proprotions Randomized Response Model)

  • 박진우
    • 응용통계연구
    • /
    • 제6권1호
    • /
    • pp.53-66
    • /
    • 1993
  • 다지확률응답모형인 경우에 대한 베이지안 접근방법을 연구하였다. O'Hagan (1987)의 베이 즈 선형추정량을 다지확률 응답모형의 경우로 확장하였다. 한편 수치비교방법에 의해 새로 이 연구된 베이즈 선형 추정량과 기존의 최대우도추정량과의 효율을 비교해 보았다. 이때 베이지안 방법의 사전분포로는 Dirichlet 분포를 사용하였다.

  • PDF

토빗회귀모형에서 베이지안 구간추정 (Bayesian Interval Estimation of Tobit Regression Model)

  • 이승천;최병수
    • 응용통계연구
    • /
    • 제26권5호
    • /
    • pp.737-746
    • /
    • 2013
  • Tobin (1958)에 의해 처음 소개된 절단 회귀모형에서 베이지안 추정은 최대가능도 추정보다 실제값에 가까운 것으로 알려져 있으나 베이지안 방법론이 구간추정 문제에 있어서도 성공적으로 작동할 수 있을 지에 대해서는 알려진 바가 없다. 일반적으로 베이지안 방법론에서 사전분포는 분석자의 사전정보를 반영하기 때문에 주관적인 분석이 될 수 밖에 없는데, 이렇게 주관적인 분석에서는 빈도학파들이 요구하는 기준을 따르기 어렵다. 그러나 무정보사전분포는 때때로 빈도학파적 특성을 갖는 베이지안 추론을 가능하게 한다. 본 연구에서는 절단 회귀모형에서 무정보사전분포에 의한 베이지안 신뢰구간의 빈도학파적 특성을 살펴보고 최대가능도 추정 신뢰구간과 포함확률을 비교한다. 이를 통해 최대가능도 추정의 표준오차가 과소 추정되고 있음 밝힌다.

신용등급전이행렬의 경험적 베이지안 추정과 비교 (Empirical Bayes Estimation and Comparison of Credit Migration Matrices)

  • 김성철;박지연
    • 응용통계연구
    • /
    • 제22권3호
    • /
    • pp.443-461
    • /
    • 2009
  • 신용전이행렬을 추정함에 있어서 국내의 등급전이자료의 축적이 부족한 점을 극복하기 위하여 외국의 신용평가기관(무디스)의 전이행렬자료와 국내의 신용등급 부여자료를 이용하여 경험적 베이지안 추정방법에 의한 전이행렬을 도출하고, 이 전이행렬을 다른 전이행렬과 비교해보기 위하여 전이행렬의 동적인 요소를 평균전이확률의 개념으로 표시할 수 있는 특성척도를 개발하여 신용전이행렬의 시계열 특성과 통계적 특성을 비교한다. 시계열자료의 척도는 베이지안 추정행렬이 안정적임을 보여주는 반면 국내 행렬은 시간적으로 변화의 폭이 크고 무디스나 베이지안 행렬보다 상대적으로 인접전이의 비율이 높게 나타났다. 붓스트랩 검정을 통하여 세 가지 추정방법이 통계적으로 유의한 차이가 있음을 보이고 베이지안 행렬이 무디스 자료보다는 국내자료에 더 많은 영향을 받았음을 유추할 수 있다. 신용등급 전이에 따른 포트폴리오의 가치변화를 고려하는 몬테칼로 시뮬레이션을 통하여 신용 VaR를 구하여 비교하였다. 국내 전이행렬의 경우에 평균은 가장 크고 신용위험도 가장 큰 값을 보였다. 시뮬레이션에서도 베이지안 추정에 의한 결과가 국내자료에 의한 결과와 더 가깝다는 것을 알 수 있다.