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A Bayes Linear Estimator for Multi—proportions
Randomized Response Model

Jin-Woo Parkl)

Abstract

A Bayesian approach is suggested to the multi-proportions randomized
response model. O’'Hagan’s (1987) Bayes linear estimator is extended to
the inference of unrelated question-type randomized response model. Also
some numerical comparisons are provided to show the performance of the
Bayes linear estimator under the Dirichlet prior.

1. Introduction

It is often difficult to get reliable information in sample surveys of human
population. Since some respondents who are not cooperative have a tendency to
give incorrect information, it may cause the response error. These difficulties arise
more seriously when the respondents are queried about sensitive or highly
personal matters which deal with phenomena that are illegal or looked upon as
morally condemnable by society. For example, "Did you have abortions during
your life time?” or "Have you ever been charged with drunken driving for the last
three months?”

Randomized response (RR) method, devised by Warner (1965), was suggested to
get more credible estimators for the proportion of sensitive attribute. Many authors
have extended the RR method to various cases, such as multi-proportions problem
and sensitive quantitative data problem. Furthermore, some authors attempted to
present Bayesian approaches to the inference of parameter in the RR model.
Initially, Winkler and Franklin (1979) suggested a Bayesian estimator for the
Warmner’s model, Pitz (1980) for the unrelated question model. All of them used a

beta prior and calculated the posterior distibutions of =4, which were written as
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mixtures of beta distributions. But their calculations were too complicated.
Recently O’Hagan (1987) introduced a Bayes linear estimator for both model.
Two important advantages of the Bayes linear estimator are simplicity and
robustness.

While many classical approaches for multi-proportions RR model have been
studied, Bayesian approaches have been studied only to the binomial proportion
problem. In this study, a Bayes linear estimator for multi-proportions RR model is
formulated. And some numerical comparisons between the new estimator and the
classical maximum likelihood estimator are also made under the Dirichlet prior.

2. Bayes Linear Estimator for Unrelated Question
Multi-proportions Model

2.1 Bayes Linear Estimator

The Bayes linear estimator has been discussed by several statisticians.
Especially, O'Hagan (1987) applied the Bayes linear estimator for the inference of
the RR model. An important advantage of the Bayes linear estimator is that it is
distribution-free. Neither prior distributions nor likelihoods need be specified fully.
Only first- and second-order moments are needed. The basic theorem is as
follows:

[Theorem] (Brunk, 1980) Let X=(X; X3 ~,Xm)' and Y=(Y1,Y2 -, Y,)’ be
random vectors whose components belong to a Hilbert space of square-integrable
random variables with inner product <xy'>=E(xy’). Where <Xx 3y > denotes
the mXn matrix that has the inner product <x;y;> in the i-th row, j-th column,

i=1,2,~,m, j=1,2,-,n. The subspace of constant random variables that
corresponds to specified parameters is spanned by the random variable that is
identically equal to one and is denoted by 1.

The Bayes linear estimator of Y given X is called the linear expection of Y
given X and is denoted as Y=LE(Y]X). The linear covariance of Y given X

1S

Vy=LlVXIX)=E[ (X- YXX- ']
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The vector Y is the orthogonal projection of Y on space { x.1), the sapce
spanned by x and 1, that minimizes
EX-1)'(XY-1t) for (€ space{x1).
In other words, Y has the smallest posterior squared error loss among linear
functions of the data, X. Then,

= E(Y)+ Cov( X, X[ Cov (X1 { X-EW)). '

The linear covariance of Y given X is

= Cov(Y) - Cov( X, X)[ Cov(X)] 'Cov (X, Y). '

In the context of a Bayes linear estimation, X is a random vector to be
observed, and Y is a quantity to be estimated (typically an unobservable
parameter). The proof of the above theorem is given in Brunk (1980).

2.2 Data-Gathering Device

In the unrelated question randomized response model, nonsensitive question is
used as the alternate question. It can be written schematically as follows.

P :Are you a member of class A?
1-P : Are you a member of class B?

The formulation is much more flexible, and generally more efficient than the
Warner’s. One extension is to replace the binary responses by quantitative ones.
Thus, schematically,

P :State your characteristic A?
1-P :State your characteristic B?

Let Ax and By be the values of the two characteristics for individual k
(k=1,2,~-,N). In practice, Ax is sensitive but By is not, and for the respondent
to feel protected, both should have identical ranges of possible values.
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Liu and Chow (1976) developed a new multi-proportions model using a new
randomizing device. A number of balls of two different colors, e.g. red and white,
will be placed in the body of the randomizing device (figure 2.1). A Discrete
number, such as 1, 2, - , t will be marked on the surface of white balls. The
proportion of red to white balls, and of white balls with different figures (1,2, -,
t), will be predetermined.

Figure 2.1 The randomizing device in the Liu and Chow’s model

The respondent is asked to turn the device upside down, and shake the device.
If the ball in the window is a red ball, the respondent will be asked to answer
the sensitive question. Otherwise, the respondent simply tells the number marked
on the white ball.

The proportions of the red balls and white balls are P and 1-P, respectively.

The proportions of white balls only is pypz-,pr where 2.p;=1-P and P,
(p1,p2, ,p:) are predetermined values. Let =;= the true proportion of the i-th

category in the population for sensitive question A, where i=12,-,¢ and =1,
The above model can be written as follows.

Category number 1 2 i t

True proportion n) ng n; e

Proportion of

white ball P P b b

( 2pi=1-P, P = proportion of red balls)
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2.3 Formulation and Estimation

Let Ax’'s and By's be the sensitive characteristics and the nonsensitive
characteristics respectively for individual k, k=1,2,-+,N where N is the population
size. Suppose that the Ax’s are square integrable and exchangeable, and so are
the Byi's. Also in the unrelated question model, it is regarded that characteristic
Ax’'s and By’'s are independent, that is

Cov(Ax, By')=0 for all k and k’

Regard each multichotomous characteristic Ax and Bx as two sets of s binary

characteristic, where s=t-1. That is, let

Ajk=I(Ak=j) ’

Bjy=I(Bx=j) ,
where j=1,2,s and k=12 -N and I(+) means the indicator function.
Consider prior knowledge of the Ax’'s and By's. Let

E(Afk) =m;
Var(Ajk) =0y,
if j=i’
coiantre) (% 54E
E(Bx) =mpy,
VaT'(BJk) =UBRj,
COU(B,];,B;';;') ={g§;’lfi;—j]#j’

Also let Xx be the response of the k-th respondent, then Xx is a
multichotomous random variable. Let
Xu=I(Xx=j)
then we can show the followings:

E(Xy) =PPr(Ax=j)+(1-P) Pr(Bx=Jj) (2.3)
=ij+(1—P)m3,- )



Var(X,k) =ij‘*‘(l—P)ij‘*'P(l‘P)(mj"InEj)z ,
Cov(Xj, Xi+) =P%cj+(1-P)cy , (2.4)
CO!)(XJk,Xj'k') =P2Cji'+(1‘P)2C1w' .

where kk’'=12 - N, k#k’, jj =12,,s and j=j’'.
The parameters of interest are
Y;=2Ax/N , j=12,+s , (2.5)
where Y; represents the true proportion of member who belong to the j-th

category of characteristic A. Then the properties of Y; are derived by the
equations (2.1) and (2.2) as follows :
E(Yj) =m; ,
Var(Y;) ={vj+(N-1)¢;}/N , (2.6)
COIJ(Yj,Yj') = (-m,-m,-' +(N—1)ij' }/N .

7;=§X, n @7

which means the proportion of respondents who answered j ' in the sample.
Since all Ax’s and Byx’'s are exchangeable, the estimator will be a function of

X;. Then from (2.3) to (2.7) expectations and variances of X;’s and covariance
of X; and X;- for j=j’ are derived as follows:

E(T]) =Pm;+(1-P)m p;
Var(X;) ={Pv;j+(1-P)v g+ P(1- P)(mjm p;)? (2.8)
+(n-1)P%c;+(n-1X(1-P)%c gj}/n ,
Cov(T(;, —Xj') = {sz,mj' +(1-P)2m3,m3,-'
+(n-1)[P%c; - +(1-P)2Cgi - 1)/n ,
Cov(Y;, X)) ={vj+(N-1)c;}(P/N) ,
Cou(Y;, _X—j’) ={-mjm; - +(N-1)c;  }(P/N) .
Thus, by eguations (2.1) , (22) and (26) to (2.9), the Bayes linear estimator

Y for Y=(Y,Ys~,Ys) and the variance measure of Y are obtained as

(2.9)

follows :

Y=FEY)+Cov(X, D Cw(X)] UX-E(X) ,
and
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Var(¥(X)) = Cov( )~ Coo( X. DNCoo (D' CovZ 1) , (210,
=[V(YJIYI')] sXs jrj ! :1,2v TS, )

where
XXX
E(X) =(E(X)),E(X3),,E(Xs)’,
E(__Z) =(E(Y),E(Y3), E(Ys)',
@U(KX) =[@U(Y1, Zj)] s§Xs
CbU(X) =[COU(YI; Xj’)] sXs
Ca)(.z) =[@D(Yj,Yj')] sXs j,j ! =1v2, S .
So the Bayes linear estimator and the variance measure for Y is
Yt =l"ZYj y
V( Yt) =V( Y1+ Y2+ et Ys)
= ZV(Y,‘)"’E%ZV(Y,’, Y;) .

If the population size N is infinite, as assumed in the randomized response
literature, then from (2.6) and (2.9) following relations are hold
Var( Yj) =Cj ,
Coo(Y;Y;) =ci 2.11)
Cov(Y; X;) =Pc;,
COD(Yj, ?jj’) =PCJ;," .

So if informations about m;’s c;j’s and cj‘’s are available, the Bayes linear

estimator can be computed easily.
Several levels of prior information about the Bjy’s may be expressed within the

general formulation. Abul-Ela et al. (1967), in the framework of a binary response
and infinite population, considered the mean of Bj's to be either known or

unknown. Liu and Chow (1976) suggested some models where the mean of the
Bj's are known. In the finite population, however, there is a further distinction to

be made.
If the population mean E is known, then its variance is zero and we find

cgi=-vg/(N-1) .
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On the other hand, if the Bi's are generated by independent randomization, we
have cg;=0.

In the general RR model it is assumed that N is infinite, so it is impossible to
let cg;=0. Furthermore, the Bj’s are generated by independent randomization in
the Liu and Chow’s model.

2.4 Prior Specification

In the case of binomial proportion model with an infinite population, Pitz (1980)
used a uniform prior which is a special case of beta distribution. To find a Bayes
linear estimator in the unrelated question-type multi-proportions RR model, not
only mj, ¢; and c;' but also mp;, cg and cg;‘ , jJj = 12, -, s and j=j’,
are needed to be specified. It is simple to specify informations about Bj's.

Here also if we could obtain a truthful answer to the question of interest
without using a randomizing device, the sampling could be multinomial in
X' =(Y1,Ys,Ys).

Let’'s assume t=3 and _Y'=(Y,Y:Y3) has a Dirichlet distribution with
parameters (a,b,c) then followings can be found (Johnson and Kotz (1972)) :

E(Yl)=a/Sy

E(Y2)=b/S, 212
Var(Y1)=a(S-a)/[Sz(S+1)] ’ (213)
Var(Y2)=b(S-b)AS?(S+1)],

Cov(Y1,Y32)=-ab/[S%S+1)],
Cov(Y),Y3)=—bc/[SUS+1)], (2.14)

where S=(a+b+c). From(2.11) and (212) to (2.14) the values of mj, c; and c;-
can be obtained. Since it is assumed that the informatioons about Bjy’'s are

already known, the Bayes linear estimator can be computed easily by substituting
above values into equations (2.6) through (2.10). Thus, only Dirichlet parameters
(a,b,c) are required to find the Bayes linear estimator.
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3. Numerical Comparison

It is very difficult to compare the Bayes linear estimator (BLE) with the
classical maximum likelihood estimator (MLE) analytically. In this case it is very
useful to compare the performance of BLE with that of MLE through numerical
comparisons. For this purpose numerical comparisons are made. In this section, the
results of numerical comparisons are presented and a brief comment on the results
is given.

3.1 Design of Numerical Comparison

This comparison will be investigated in one set of #; (x,=.05, n2=.15, =3=.80)
The sample size is 500 and the comparisons are based on 500 replications. 0.6, 0.7,
0.8 and 09 are considered as randomizing probabilities. The proportion of white
balls marked 'i’ , i.e. p; are given to be equal.

The Dirichlet distribution is specified as prior for the BLE. Since Winkler and
Franklin (1979) suggested the beta prior distribution for binomial case, the
Dirichlet prior distribution, which is a natural conjugate of multinomial distribution,
is suggested as a prior for trinomial case. Following values are considered as the
prior parameter values :

(1,2,6) (1,29 (1,2,12) (1,2,15) (1,3,8 (1,3,12)
(1,3,16) (1,3,20) (1,4,10) (1,4,15) (1,4,20) (1,4,25)

The population proportion of each category is ( .05, .15, .80), the prior
parameter value (1, 3, 16 ) corresponds to it. Since the population proportion is
unknown, it is difficult to give exact prior parameter value. But it is possible to
give relevant prior information in many sampling survey problems. To show the
performances of the BLE wunder various prior informations, many different
parameter values are suggested. ‘

To investigate the efficiencies of the BLE with respect to the MLE, MSEs of
both estimators are calculated and the relevant efficiency of two estimates, which
is defined as the inverse ratic of the MSEs, that is,

Ref(BLE, MLE) = MSE(BLE) / MSE(MLE)

is computed.
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3.2 Comparison Result

Table 3.1 - Table 3.4 show the relative efficiencies of the BLE with respect to
the MLE for various prior parameter values when the randomizing probability
changes from 0.6 to 0.9 with increment 0.1.

Table 3.1 The Ref(BLE, MLE)s under various parameter values
P=06, (=, =y =n3)=(0.050.150.80), n=500

prior category 1 category 2 category 3
Dirichlet(1,2, 6) 1.10 1.06 1.25
Dirichlet(1,2, 9) 0.98 0.93 1.10
Dirichlet(1,2,12) 0.88 0.85 0.97
Dirichlet(1,2,16) 0.74 0.79 0.71
Dirichlet(1,3, 8) 0.99 1.12 1.27
Dirichlet(1,3,12) 0.85 0.97 1.07
Dirichlet(1, 3,16) 0.74 0.85 0.92
Dirichlet(1, 3, 20) 0.66 0.80 0.87
Dirichlet(1, 4, 10) 0.88 1.18 1.25
Dirichlet(1,4,15) 0.75 0.99 1.01
Dirichlet(1,4,20) 0.66 0.85 0.88
Dirichlet(1, 4, 25) 0.62 0.78 0.87

Table 3.2 The Ref(BLE, MLE)s under various parameter values
P=07, (n;, =z =3)=(0.050.150.80), n=500

prior category 1 category 2 category 3
Dirichlet(1,2, 6) 1.18 1.08 1.25
Dirichlet(1,2, 9) 1.04 0.95 1.11
Dirichlet(1,2,12) 0.94 0.86 1.00
Dirichlet(1,2,15) 0.81 0.85 0.83
Dirichlet(1,3, 8) 1.05 1.16 1.27
Dirichlet(1,3,12) 0.92 1.00 1.09
Dirichlet(1, 3, 16) 0.82 0.89 0.97
Dirichlet(1, 3, 20) 0.76 0.82 0.92
Dirichlet(1, 4, 10) 0.95 1.23 1.28
Dirichlet(1, 4,15) 0.82 1.02 1.05
Dirichlet(1, 4, 20) 0.75 0.90 0.94
Dirichlet(1, 4, 25) 0.70 0.81 0.89




A Bayes Linear Estimator for Randomized Response Model 63

Table 3.3 The Ref(BLE, MLE)s under various parameter values
P=08, (r;, nz =n3)=(0.05,0.150.80), n=500

prior category 1 category 2 category 3
Dirichlet(1,2, 6) 1.29 1.12 1.26
Dirichlet(1,2, 9) 1.12 0.97 1.11
Dirichlet(1,2,12) 1.01 0.86 1.00
Dirichlet(1,2,15) 0.82 0.83 0.85
Dirichlet(1,3, 8) 1.13 1.21 1.28
Dirichlet(1,3,12) 0.97 1.03 1.11
Dirichlet(1, 3,16) 0.87 0.91 0.98
Dirichlet(1, 3, 20) 0.78 0.83 0.90
Dirichlet(l, 4, 10) 1.01 1.29 1.31
Dirichlet(1, 4, 15) 0.88 1.08 1.10
Dirichlet(1, 4, 20) 0.79 0.93 0.97
Dirichlet(1, 4, 25) 0.73 0.83 0.90

Table 3.4 The Ref(BLE, MLE)s under various parameter values
P=09, (n), =mg =3)=1(0.050.150.80), n=500

prior category 1 category 2 category 3
Dirichlet(1,2, 6) 1.47 1.16 1.24
Dirichlet(1,2, 9) 1.23 0.98 1.10
Dirichlet(1,2,12) 1.08 0.85 0.98
Dirichlet(1,2,15) 0.89 0.81 0.87
Dirichlet(1,3, 8) 1.23 1.27 1.27
Dirichlet(1, 3,12) 1.04 1.06 1.10
Dirichlet(1, 3,16) 0.90 0.92 0.97
Dirichlet(1, 3, 20) 0.82 0.80 0.87
Dirichlet(1, 4,10) 1.08 1.37 1.31
Dirichlet(1, 4, 15) 0.91 1.11 1.10
Dirichlet(1, 4, 20) 0.79 0.95 0.96
Dirichlet(1, 4, 25) 0.73 0.85 0.89

From the above Tables, the following can be observed:

1. As long as the prior information is not so different from the population, the
BLE has smaller MSE than the MLE except the cases of the Dirichlet
parameters (1,2 6), (1,2 9), (1,3, 8), (1,3,12), (1,4,10). When proportions of the
prior parameter values are near to (1,3,16), the expected proportions of each
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group is the same with population proportion (x;=0.05 72=0.15 =3=0.80),
Tables show that the BLE is more efficient than the MLE. So in case

relevant information about the population is available, it it efficient to use
the BLE.

2. The gain of efficiency of the BLE for the category 1, which has the smallest

proportion, is greater than that of other categories. Because the most
sensitive category has the smallest proportion in general, estimation of the
smallest category proportion is more important than other categories. So it
is regarded that the BLE has good performance.

3. As the randomizing probability P increases, the gain of efficiency decreases.

(1]

(2]

(3]

(4]

[5]

(6]

When P is equal to 1.0, that is, only direct questioning method is used, we
know that the MLE is the best unbiased estimator. In general randomized
response study, 0.7-08 is used as randomizing probability. So it is
recommendable to use the BLE.
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