• Title/Summary/Keyword: 베이지안 최적화

Search Result 51, Processing Time 0.023 seconds

Inverse Estimation of Fatigue Life Parameters for Spring Design Optimization (스프링 최적설계를 위한 피로수명 파라미터의 역 추정)

  • Kim, Wan-Beom;An, Da-Wn;Choi, Joo-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.345-348
    • /
    • 2011
  • 구조요소의 설계에서 유한요소해석은 매우 효과적인 방법이다. 이 방법은 시험 수행에 드는 시간과 비용을 줄여준다. 그러나 공정 과정과 환경에 의하여 생기는 입력 물성치들의 변화 때문에 우리는 유한요소해석의 결과를 전적으로 믿어서는 안 된다. 따라서 유한요소해석의 신뢰성을 증명하는 것은 매우 중요하다. 본 연구에서는 현장에 축적된 피로 수명 시험 데이터를 바탕으로 유한요소해석을 이용하여 피로수명 파라미터를 역 추정 하는 연구를 수행하였다. 베이지안 접근법을 이용하여 불확실성 피로 수명 파라미터의 사후분포를 구하였고, 마코프체인몬테카를로(Markov Chain Monte Carlo) 기법을 이용하여 역 추정된 파라미터의 샘플 데이터를 생성하였다. 얻어진 샘플 데이터를 기반으로 새로운 형상의 스프링에 대한 피로 수명을 예측한다. 신뢰성 기반 형상 최적화(RBDO)는 서스펜션 코일 스프링의 요구수명을 만족시키기 위하여 수행된다. 또한 크리깅 근사 모델은 유한요소해석의 연산 량 감소를 위해 이용한다.

  • PDF

Variational Bayesian Methods for Learning HMM with Mixture of Gaussian Outputs (가우시안 혼합 출력 HMM을 위한 변분 베이지안 방법)

  • O Jangmin;Zhang Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.619-621
    • /
    • 2005
  • 은닉 마코프 모델은 이산 동역학을 표현할 수 있는 확률 모형이다. 우도 함수 최적화를 수행하는 전통적인 Baum-Welch 학습 알고리즘은 국소해로 수령하기 쉬우며, 우도함수의 특성상 복잡한 모델을 선호하는 바이어스가 존재한다. 베이지안 프레임워크에서는 파라미터를 랜덤 변수로 보고 이에 대한 사후 확률 분포를 추정하여 이 문제를 해결할 수 있다. 본 논문에서는 베이지안 추정을 위한 결정론적 근사화 기법인 변분 베이지안 방법을 이용, 출력 노드에 가우시안 혼합 노드를 지니는 일반화된 HMM의 추론 방법을 유도한다. 인공 데이터에 대한 실험을 통해, 본 방법이 효과적인 HMM 학습을 수행할 수 있음을 보인다.

  • PDF

Hierarchical Gabor Feature and Bayesian Network for Handwritten Digit Recognition (계층적인 가버 특징들과 베이지안 망을 이용한 필기체 숫자인식)

  • 성재모;방승양
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • For the handwritten digit recognition, this paper Proposes a hierarchical Gator features extraction method and a Bayesian network for them. Proposed Gator features are able to represent hierarchically different level information and Bayesian network is constructed to represent hierarchically structured dependencies among these Gator features. In order to extract such features, we define Gabor filters level by level and choose optimal Gabor filters by using Fisher's Linear Discriminant measure. Hierarchical Gator features are extracted by optimal Gabor filters and represent more localized information in the lower level. Proposed methods were successfully applied to handwritten digit recognition with well-known naive Bayesian classifier, k-nearest neighbor classifier. and backpropagation neural network and showed good performance.

Inference of System Resource States Using Bayesian Network for Self-Optimizing and Self-Healing Component-based Middleware (컴포넌트 기반 미들웨어 자기최적화와 자가치료을 위한 베이지안 네트워크를 사용한 시스템 자원 상태 추론)

  • Choi Bo-Yoon;Kim Kyung-Joong;Cho Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11a
    • /
    • pp.829-831
    • /
    • 2005
  • 최근 컴포넌트 기반 미들웨어의 최적화에 대한 연구가 활발히 이루어지고 있다. CPU점유율이 높은 어플리케이션의 동시 실행은 시스템에 부하를 주기 때문에, 시스템 성능을 약화시키고 실행중인 어플리케이션에 영향을 준다. 컴포넌트 기반 미들웨어는 여러 개의 재사용 가능한 컴포넌트를 조합하여 어플리케이션을 구성하기 때문에 동적으로 재구성이 가능하다. 본 논문은 컴포넌트 기반 미들웨어가 시스템 상황에 대한 정보를 받아들여 시스템의 상황을 스스로 판단하고 자가치료 또는 시스템의 성능을 최적화시키는 컴포넌트를 선택하는 방법을 제안한다. 상황판단을 위해 유연한 추론이 가능하고, 데이터로부터 자동학습이 가능한 베이지안 네트워크를 사용하였다. 두 시간 가량의 데이터를 리눅스 사용자로부터 획득하여 실험한 결과, 테스트 데이터에 대해 $76.5\%$의 성능을 보였다.

  • PDF

Improving Trajectory Pattern Prediction Model Using Bayesian Optimization (베이지안 최적화를 이용한 이동 경로 예측 모델의 성능 개선)

  • Song, Ha Yoon;Nam, Sehyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.846-849
    • /
    • 2020
  • 하이퍼파라미터(초매개변수) 최적화란 모델의 학습에 앞서 미리 설정해야 하는 값인 하이퍼파라미터의 최적값을 탐색하는 문제이다. 이때의 최적값은 학습을 끝낸 모델의 성능을 가능한 최대치로 높이게 하는 값이다. 한편, 최근 모바일 장치를 이용한 포지셔닝 데이터의 대량 수집이 가능해지면서 이를 활용하여 위치 기반 서비스(Location-Based Service)를 위한 데이터 분석 및 예측에 관한 연구가 활발히 이루어졌다. 그중 이동 경로를 이미지로 패턴화하여 국소 지역 내에서 다음 위치를 예측하는 CNN 모델에 대해서 하이퍼파라미터 튜닝을 진행하였다. 결과적으로 베이지안 최적화(Bayesian Optimization)를 통해 모델의 성능을 평균 3.7%, 최대 9.5%까지 개선할 수 있음을 확인하였다.

Bayesian Optimization Framework for Improved Cross-Version Defect Prediction (향상된 교차 버전 결함 예측을 위한 베이지안 최적화 프레임워크)

  • Choi, Jeongwhan;Ryu, Duksan
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.9
    • /
    • pp.339-348
    • /
    • 2021
  • In recent software defect prediction research, defect prediction between cross projects and cross-version projects are actively studied. Cross-version defect prediction studies assume WP(Within-Project) so far. However, in the CV(Cross-Version) environment, the previous work does not consider the distribution difference between project versions is important. In this study, we propose an automated Bayesian optimization framework that considers distribution differences between different versions. Through this, it automatically selects whether to perform transfer learning according to the difference in distribution. This framework is a technique that optimizes the distribution difference between versions, transfer learning, and hyper-parameters of the classifier. We confirmed that the method of automatically selecting whether to perform transfer learning based on the distribution difference is effective through experiments. Moreover, we can see that using our optimization framework is effective in improving performance and, as a result, can reduce software inspection effort. This is expected to support practical quality assurance activities for new version projects in a cross-version project environment.

Optimization of Bayesian Networks Aggregation Using Genetic Algorithm (진화 알고리즘을 이용한 베이지안 네트워크 병합의 최적화)

  • Kim Kyung-Joong;Cho Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.121-123
    • /
    • 2006
  • 베이지안 네트워크 병합은 여러 개의 베이지안 네트워크를 하나의 네트워크로 합치는 것을 말한다. 일반적으로 사용되는 병합 알고리즘은 병합 순서에 따라 최종결과 네트워크의 복잡도가 달라지는 문제를 갖고 있고, 최종 병합 네트워크의 에지 수를 최소화하는 병합 순서를 찾는 것은 NP-hard라고 증명되었다. 본 논문에서는 최적의 병합 순서를 결정하기 위해 진화 알고리즘을 사용하는 방법을 제안한다. 해공간 분석을 통해 permutation index 표현방법이 해탐색에 유리함을 보이고 이를 이용한 진화 알고리즘을 제안한다. 실험결과, 기존의 휴리스틱과 greedy 탐색 방법에 비해 제안한 방법이 우수한 성능을 보였다.

  • PDF

Online Sonobuoy Deployment Method with Bayesian Optimization for Estimating Location of Submarines (잠수함 위치 추정을 위한 베이지안 최적화 기반의 온라인 소노부이 배치 기법)

  • Kim, Dooyoung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.72-81
    • /
    • 2022
  • Maritime patrol aircraft is an efficient solution for detecting submarines at sea. The aircraft can only detect submarines by sonobuoy, but the number of buoy is limited. In this paper, we present the online sonobuoy deployment method for estimating the location of submarines. We use Gaussian process regression to estimate the submarine existence probability map, and Bayesian optimization to decide the next best position of sonobuoy. Further, we show the performance of the proposed method by simulation.

A Real-time Point Cloud Ground Segmentation Study for Outdoor Autonomous Robots (실외 자율주행 로봇을 위한 실시간 Point Cloud Ground Segmentation)

  • Ji-Won Son;Hyung-Pil Moon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.482-483
    • /
    • 2024
  • Real-time Point Cloud Ground Segmentation은 자율주행에서 판단 및 객체 탐지/추적 등 다양한 분야에 도움을 준다. 이에 따라, Real-time Point Cloud Ground Segmentation을 했으며, 센서로는 라이다, 알고리즘으로는 TRAVEL논문을 인용했다. 또한 Real-time Point Cloud Ground Segmentation뿐 만 아니라 이동가능지형 판단(Traversability)을 하였다. 그리고 최종적으로, 위와 같은 알고리즘들을 회사 로봇(Scout Mini Robot)에 접목시켰으며 그 과정에서 TRAVEL 알고리즘내에 내제된 파라미터 값들을 최적화시키는 과정이 필요하였다. 그래서 3가지의 방법을 통해 파라미터 값을 선정한 후, 결과값을 비교 분석하였다. 연구 결과, Rellis-3D와 베이지안 최적화를 사용한 베이지안 파라미터가 최적의 파라미터임을 확인할 수 있었다.

Bayesian Reliability Analysis Using Kriging Dimension Reduction Method(KDRM) (크리깅 기반 차원감소법을 이용한 베이지안 신뢰도 해석)

  • An, Da-Un;Choi, Joo-Ho;Won, Jun-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.275-280
    • /
    • 2008
  • A technique for reliability-based design optimization(RBDO) is developed based on the Bayesian approach, which can deal with the epistemic uncertainty arising due to the limited number of data. Until recently, the conventional REDO was implemented mostly by assuming the uncertainty as aleatory which means the statistical properties are completely known. In practice, however, this is not the case due to the insufficient data for estimating the statistical information, which makes the existing RBDO methods less useful. In this study, a Bayesian reliability is introduced to take account of the epistemic uncertainty, which is defined as the lower confidence bound of the probability distribution of the original reliability. In this case, the Bayesian reliability requires double loop of the conventional reliability analyses, which can be computationally expensive. Kriging based dimension reduction method(KDRM), which is a new efficient tool for the reliability analysis, is employed to this end. The proposed method is illustrated using a couple of numerical examples.