• 제목/요약/키워드: 베이지안 망

검색결과 71건 처리시간 0.021초

R-CORE를 통한 베이지안 망 구조 학습의 탐색 공간 분석 (Search Space Analysis of R-CORE Method for Bayesian Network Structure Learning and Its Effectiveness on Structural Quality)

  • 정성원;이도헌;이광형
    • 한국지능시스템학회논문지
    • /
    • 제18권4호
    • /
    • pp.572-578
    • /
    • 2008
  • 본 논문에서는 대규모 베이지안 망 구조 학습을 위해 제안되었던 R-CORE 방법의 탐색 공간의 크기에 대한 개략적인 분석과 실제 문제에 적용하였을 경우의 효과에 대한 실험적 결과를 제시한다. R-CORE 방법은 베이지안 망 구조 학습의 탐색 공간을 축소하기 위해 제안된 확률변수들의 재귀적 군집화와 오더 제한 방법이다. 알려진 벤치마크 베이지안 망을 이용한 분석을 통해, 제안되었던 R-CORE 방법이 worst case에는 기존의 방법과 유사한 탐색 공간을 가지나 평균적으로 기존방법보다 훨씬 적은 탐색 공간만을 고려한다는 것을 보인다. 또한 평균적으로 훨씬 적은 탐색 공간만을 고려하는 결과, 구조 탐색에서 기존 방법에 비해 상대적으로 적은 overfitting이 일어남을 실험적으로 보인다.

베이지안 GTM을 이용한 패턴 분류 (Pattern Classification by Using Bayesian GTM)

  • 최준혁;김중배;김대수;임기욱
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 추계학술대회 학술발표 논문집
    • /
    • pp.287-290
    • /
    • 2001
  • Bishop이 제안한 generative Topographic Mapping(GTM)은 Kohonen이 제안한 자율 학습 신경망인 Self Organizing Maps(SOM)의 확률적 버전이다. 본 논문에서는 이러한 GTM 모형에 베이지안 추론을 결합하여 작은 오분류율을 가지는 분류 알고리즘인 베이지안 GTM(Bayesian GTM)을 제안한다. 이 방법은 기존의 GTM의 빠른 계산 처리 능력과 베이지안 추론을 이용하여 기존의 분류 알고리즘보다 우수한 결과가 나타남을 실험을 통하여 확인하였다.

  • PDF

베이지안 망을 이용한 온톨로지의 구축에 관한 연구

  • 장성원;이건창
    • 한국경영정보학회:학술대회논문집
    • /
    • 한국경영정보학회 2008년도 춘계학술대회
    • /
    • pp.288-293
    • /
    • 2008
  • 의미적 지식기반인 온톨로지(ontology)에 대한 관심이 높아지고 있다. 온톨로지란 어휘나 개념의 정의 또는 명세로서, 인간과 컴퓨터의 의사소통 또는 지식의 표현과 저장, 활용 및 재사용을 위해 이용된다. 그러나 온톨로지를 구축하는 대부분의 방법은 체계적이거나 자동적이지 못하다. 도메인 전문가에 의존하는 전통적인 온톨로지 구축 방법은 시간과 비용이 많이 소요된다. 온톨로지 구축 툴은 많이 있지만 아직 인간의 노력을 필요로 한다. 또한 변화하는 도메인 지식을 온톨로지에 신속하게 반영하는 것은 어려운 일이다. 본 연구는 이러한 한계를 해결하기 위해, 도메인 전문가의 지식이나 경험을 최소화하면서 자동적으로 도메인 지식을 얻을 수 있는 방법을 제시하였다. 이 방법은, 데이터 기반의 도메인 지식을 대상으로, 베이지안 망(Bayesian network)이 갖고 있는 데이터 분석에서의 장점과 온톨로지와의 관련성을 이용하여 온톨로지를 자동적으로 구축하는 것이다. 평판(flat panel) TV 경기예측 사례를 통하여 온톨로지를 구축하는 과정을 알아보았다. 구축과정의 타당성을 확보하기 위하여 디스플레이 산업 전문가들과의 인터뷰를 통하여 온톨로지를 완성하고, 해당 온톨로지의 타당성 검증을 위하여 멤버체크를 한 결과 매우 높은 타당성을 얻을 수 있었다. 본 연구에서 제안하는 온톨로지는, 실제로 산업경기 예측을 계획하고 구축하며 미래 의사결정지원시스템을 설계하기 위한 주요 구성요인으로 제공될 수 있을 것이다.

  • PDF

베이지안 확률을 적용한 기계학습 기반 다중 결함 위치 식별 기법 (Machine Learning-based Multiple Fault Localization with Bayesian Probability)

  • 송지현;김정호;이은석
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2017년도 제55차 동계학술대회논문집 25권1호
    • /
    • pp.151-154
    • /
    • 2017
  • 소프트웨어의 개발과정 중 결함을 제거하는 작업인 디버깅을 위해서는 가장 먼저 그 결함의 정확한 위치를 찾아야한다. 이 작업은 많은 시간이 소요되며, 이 시간을 단축시키기 위한 결함 위치 식별 기법들이 소개되었다. 많은 기법들 중 프로그램 커버리지 정보를 학습하여 규칙을 분석하는 인공신경망 기반 선행 연구가 있다. 이를 기반으로 본 논문에서는 문장들 간의 관계를 추가적으로 파악하여 학습 데이터로 사용하는 기법을 제안한다. 특정 문장이 항상 지나는 테스트케이스들 중 나머지 다른 문장들이 지나는 테스트케이스의 비율을 통해 문장들 간의 관계를 나타낸다. 해당 비율을 계산하기 위해 조건부 확률인 베이지안 확률을 사용한다. 베이지안 확률을 통해 얻은 문장들의 관계에 따라 인공신경망 내에서 의심도를 결정하는 웨이트(weight)가 기존 기법과는 다르게 학습된다. 이 차이는 문장들의 의심도를 조정하며, 결과적으로 다중 결함 위치 식별의 정확도를 향상시킨다. 본 논문에서 제안한 기법을 이용하여 실험한 결과, Tarantula 대비 평균 39.8%, 기존 역전파 인공신경망(BPNN) 기반 기법 대비 평균 60.5%의 정확도 향상이 있었음을 확인할 수 있다.

  • PDF

베이지안 망을 이용한 통행발생 모형의 설계 및 구축 (Design and Implementation of Trip Generation Model Using the Bayesian Networks)

  • 김현기;이상민;김강수
    • 대한교통학회지
    • /
    • 제22권7호
    • /
    • pp.79-90
    • /
    • 2004
  • 베이지안 망(Bayesian Networks)은 인공 신경망, 유전자 알고리즘, 전문가시스템 퍼지이론 등과 더불어 데이터마이닝의 중요한 기법 중의 하나로서, 베이지안 통계 이론(Bayesian Statistics Theory)을 적용하여 변수들간의 확률적인 관계를 기호화함으로써, 설명변수들과 종속변수들간의 인과관계를 파악할 수 있다. 이 연구는 2002년도 수도권 가구통행실태조사 자료의 가구, 개인 및 통행 특성(가구수입, 승용차 보유대수, 주택규모, 통행목적 등)을 반영하여, 베이지안 망을 이용한 통행발생 모형을 처음으로 설계 구축하여, 각 변수들간의 상관관계와 인과관계를 분석함으로써, 설명변수인 가구수입의 구성비가 변하였을 때 승용차 보유대수와 주택규모 구성비의 변화율(확률)을 예측한다. 그리고 승용차 보유대수와 주택규모의 구성비가 변하였을 때 통행목적 구성비의 확률을 예측한다. 또한 동행목적의 발생량이 변화였을 때, 가구 특성 구성비의 변화에 따른 발생량을 예측한다. 따라서, 이 연구는 현실에는 존재하지만 설명변수들간의 복잡한 상관성을 배제하고 설명변수와 통행목적간의 단순한 직선관계를 가정하는 기존 통행발생 모형의 한계를 극복할 수 있는 가능성을 제시한다. 또한 선택되지 않은 통행목적에 대한 정보의 부족으로 인한 통행발생 모형 구축의 어려움을 극복한다. 또한 통행목적의 변화를 실시간으로 모의실험(Simulation) 할 수 있는 방법론을 개발하여 다양한 교통정책에 확대 적용할 수 있을 것이다.

기업부도예측을 위한 통합알고리즘

  • 배재권;김진화
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2006년도 춘계학술대회
    • /
    • pp.195-202
    • /
    • 2006
  • 본 연구에서는 보다 효과적인 기업부도예측을 위하여, 동계적 방법과 인공지능 방법을 결합한 통합모형을 제시하였다. 이를 위하여 통계적인 모형 중에서 가장 널리 활용되고 있는 다변량 판별분석, 로지스틱 회귀분석과 인공 지능적인 방법으로서 최근 널리 사용되고 있는 인공신경망, 규칙유도기법, 베이지안 망의 5가지 방법론을 통합한 Voting with Performance & Weights from ANN(WP-ANN) 통합모형을 제시하였다. 실험결과, 본 연구에서 제안한 WP-ANN 통합모형은 다변량 판별분석, 로지스탁 회귀분석, 인공신경망, 규칙유도기법, 베이지안 망 등의 단일모형과 비교한 결과 가장 예측정확성이 유수한 것으로 나타났다. 따라서 본 연구를 통해 기업부도예측에 있어서 WP-ANN 통합모형이 기존의 모형들에 비해 우수한 예측정확성을 나타냄을 알 수 있었다.

  • PDF

심층신경망 및 베이지안 최적화 기반 패키지 휨 최적화 시간 단축 (Time Reduction for Package Warpage Optimization based on Deep Neural Network and Bayesian Optimization)

  • 이중언;권대일
    • 마이크로전자및패키징학회지
    • /
    • 제31권3호
    • /
    • pp.50-57
    • /
    • 2024
  • 최근 대리 모델에 머신 러닝 기술을 접목하여 복잡한 설계에 대한 최적화를 빠르게 달성하는 방법론이 활발히 연구되고 있다. 훈련된 머신 러닝 대리 모델은 복잡한 유한요소해석 시뮬레이션 대비 컴퓨팅 자원을 적게 소모하면서 동일한 해석 결과를 출력할 수 있다. 또한 훈련된 모델에 최적화를 결합하면 반복 시뮬레이션 대비 더 빠르게 최적의 설계 변수를 도출할 수 있다. 본 연구에서는 패키지 휨을 최소화하는 설계 변수 조합을 효과적으로 탐색하기 위하여 심층신경망과 베이지안 최적화를 적용하였다. 심층신경망 모델은 유한요소해석 시뮬레이션으로 획득한 설계 변수-휨 데이터셋을 바탕으로 훈련하였고, 해당 모델에 베이지안 최적화를 적용하여 휨을 최소화하는 최적의 설계 변수를 탐색하였다. 구축한 심층신경망 및 베이지안 최적화 모델은 실제 시뮬레이션 결과와 99% 이상 일치하는 동시에, 최적 설계 변수 탐색에 소요되는 시간은 15초에 불과하여, 1회의 시뮬레이션과 비교해도 57% 이상 최적화 시간을 단축할 수 있다.

Pharmacogenomics를 위한 대규모 베이지안 유전자망 학습 (Large-Scale Bayesian Genetic Network Learning for Pharmacogenomics)

  • 황규백;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.139-141
    • /
    • 2001
  • Pharmacogenomics는 개인의 유전적 성향과 약물에 대한 반응간의 관계에 대해 연구하는 학문이다. 이를 위해 DNA microarray 데이터를 비롯한 대량의 생물학 데이터가 구축되고 있으며 이러한 대규모 데이터를 분석하기 위해서 기계학습과 데이터 마이닝의 여러 기법들이 이용되고 있다. 본 논문에서는 pharmacogenomics를 위한 생물학 데이터의 효율적인 분석 수단으로 베이지안망(Bayesian network)을 제시한다. 배이지안망은 다수의 변수들간의 확률적 관계를 표현하는 확률그래프모델(probabilistic graphical model)로 유전자 발현과 약물 반응 사이의 확률적 의존 관계를 분석하는데 적합하다. NC160 cell lines dataset으로부터 학습된 베이지안 유전자망(Bayesian genetic network)이 나타내는 관계는 생물학적 실험을 통해 검증된 실제 관계들을 다수 포함하며, 이는 배이지안 유전자망 분석을 통해 개략적인 유전자-유전자, 약물-약물, 유전자-약물 관계를 효율적으로 파악할 수 있음을 나타낸다.

  • PDF

대사증후군의 예측 모델링을 위한 베이지안 네트워크의 속성 순서 최적화 (An Attribute Ordering Optimization in Bayesian Networks for Prognostic Modeling of the Metabolic Syndrome)

  • 박한샘;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (A)
    • /
    • pp.1-3
    • /
    • 2006
  • 대사증후군은 당뇨병, 고혈압, 복부 비만, 고지혈증 등의 질병이 한 개인에게 동시에 발현하는 것을 말하며, 최근 경제여건의 향상 및 식생활 습관의 변화와 함께 우리나라에서도 심각한 문제가 되고 있다. 한편 불확실성의 처리를 위해 많이 사용되는 베이지안 네트워크는 사람이 분석 가능한 확률 기반의 모델로 최근 의학분야에서 질병의 진단이나 예측모델을 구성하기 위한 방법으로 유용하게 사용되고 있다. 베이지안 네트워크의 구조를 학습하는 대표적인 알고리즘인 K2 알고리즘은 속성이 입력되는 순서의 영향을 받으며, 따라서 이 또한 하나의 주제로써 연구되어 왔다. 본 논문에서는 유전자 알고리즘을 이용하여 베이지안 네트워크에 입력되는 속성 순서를 최적화하며 이 과정에서 의학지식을 적용해 효율적인 최적화가 가능하도록 하였다. 제안하는 모델을 통해 1993년의 데이터를 가지고 1995년의 상태를 예측하는 분류 실험을 수행한 결과 속성 순서 최적화 후에 이전보다 향상된 예측율을 보였으며 또한 다층 신경망, k-최근접 이웃 등을 이용한 다른 모델보다 더 높은 예측율을 보였다.

  • PDF

베이지안 네트워크를 활용한 정신장애 질병 섬망(delirium)의 주요 요인 네트워크 규명 (Network Identification of Major Risk Factor Associated with Delirium by Bayesian Network)

  • 이제영;최영진
    • 응용통계연구
    • /
    • 제24권2호
    • /
    • pp.323-333
    • /
    • 2011
  • 정신장애 질병과 관련된 인자를 찾기 위해 쉽고 간단하게 위험인자를 얻을 수 있는 로지스틱 회귀모형을 주로 이용하였다. 본 논문에서는 데이터마이닝 기업인 로지스틱 회귀모형과 신경망, C5.0, Cart, 베이지안 네트워크를 지저질환과 밀접하게 연관된 가역적 기질성 정신장애인 섬망(delirium) 자료에 적용하여 베이지안 네트워크 기법을 최적의 모형으로 선택하였다. 또한 베이지안 네트워크 기법을 활용하여 정신장애 질병인 섬망과 관련된 주요 위험인자 간 네트워크를 규명하였다.