• Title/Summary/Keyword: 베이지안확률

Search Result 324, Processing Time 0.027 seconds

Empirical Bayes Estimation of the Probability of Discovering a New Species (신종발견확률의 경험적 베이지안 추정에 관한 연구)

  • Joo Ho Lee
    • The Korean Journal of Applied Statistics
    • /
    • v.7 no.1
    • /
    • pp.159-172
    • /
    • 1994
  • An empirical Bayes estimator of the probability of discovering a new species is proposed when some prior information is available on the number f species. The new estimator is shown via simulations to have only a moderate bias and a smaller RMSE than Good's estimator when the species population follows a truncated geometric distribution.

  • PDF

Bayesian Inference Model for Landmark Detection on Mobile Device (모바일 디바이스 상에서의 특이성 탐지를 위한 베이지안 추론 모델)

  • Hwang Keum-Sung;Cho Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.127-129
    • /
    • 2006
  • 모바일 디바이스에서 얻을 수 있는 로그에는 다양한 개인정보가 풍부하게 포함되어 있으면서도 제약이 많아 활용이 어렵다. 그 동안은 모바일 장치의 용량, 파워의 제약과 정보 분석의 어려움으로 로그 정보를 무시해온 것이 일반적이었다. 본 논문에서는 모바일 디바이스의 다양한 로그 정보를 분석하여 사용자에게 의미 있는 상황(특이성)을 탐지해낼 수 있는 정보 분석 방법을 제안한다. 불확실한 상황에서의 정확성 향상을 위해 규칙/패턴 분석에 의한 특이성 추론뿐만 아니라 베이지안 네트워크를 활용한 확률적인 접근 방법을 활용한다. 이때, 복잡하지 않고 연산이 효율적으로 이루어질 수 있도록 BN을 모듈화하고 모듈화된 BN의 상호보완적인 확률 추론을 위한 BN 처리 과정을 제안한다. 그리고, 특이성 추출 모듈을 주기적으로 업데이트함으로써 성능을 향상시키기 위한 학습알고리즘을 소개한다.

  • PDF

Place and Object Recognition In Uncertain Indoor Environments Using SIFT and Bayesian Network (SIFT와 베이지안 네트워크를 이용한 불확실한 실내 환경에서의 위치 및 물체 인식)

  • Im Seung-Bin;Cho Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.637-639
    • /
    • 2005
  • 영상 정보를 통한 실내 환경의 인식은 지능형 로봇에서 매우 중요한 문제이다. 영상을 통한 실내 환경정보는 로봇의 각도나 위치의 영향으로 불확실해질 수 있으므로 영상 인식 기법은 이러한 불확실함에 강인함을 갖고 있어야 한다. 본 논문에서는 불확실하게 들어오는 실내 환경 정보에서 PCA를 통한 위치 정보와 SIFT를 통한 물체 존재 정보를 추출하고 이를 베이지안 네트워크에 적용하여 장소 및 물체를 인식하는 방법을 제안한다. 실제 실내 환경에서의 실험을 통하여 8곳의 위치 및 20개의 오브젝트를 효과적으로 인식하는 것을 확인할 수 있었으며 위치에 따른 물체의 존재 확률 추론 및 존재 물체에 의한 위치 확률의 수정 등 다양한 방향의 추론도 가능하다.

  • PDF

Bayesian Evolutionary Computation by Variational Mixtures of Factor Analyzers for Continuous Function Optimization (연속 변수 함수 최적화를 위한 Variational 혼합 인자 분석 베이지안 진화 연산)

  • Cho Dong-Yeon;Zhang Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.697-699
    • /
    • 2005
  • 연속 변수 함수 최적화를 위한 진화 연산에서는 전통적으로 확률 분포를 도입하여 새로운 세대를 생성하는 기법을 사용하고 있다. 최근 들어 이러한 확률 분포를 개체군으로부터 추정하여 보다 효율적으로 최적화를 해결하려는 연구가 진행되고 있다. 본 논문에서는 variational 베이지안 혼합 인자 분석 기법(Bayesian mixtures of factor analyzers)을 사용한 개체군의 분포 추정을 통해 연속 변수 함수의 최적화 문제를 해결하는 방법을 제안한다. 이 기법은 혼합 분포의 개수 추정을 자동화하여 개체군의 다양성을 유지할 수 있기 때문에 지역 최적점으로 일찍 수렴하는 현상을 방지할 수 있으며, 세부 개체군 내의 분포 추정을 통해 탐색을 효율적으로 수행할 수 있다. 잘 알려진 평가 함수들에 대하여 다른 분포 추정 진화 연산과 비교하여 제안하는 방법의 우수성을 검증하였다.

  • PDF

An exercise recommendation system using bayesian network and singular value decomposition algorithm (베이지안 네트워크와 특이값 분해 알고리즘을 이용한 운동 추천 시스템)

  • Shin, A-Young;Lim, Yujin
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.470-473
    • /
    • 2021
  • 본 논문에서는 코로나-19로 인해 홈 트레이닝 시장이 성장하고 있는 상황 속에서 효율적인 운동을 위해 사용자의 식습관, 신체조건, 선호도 등을 바탕으로 적합한 운동을 추천해주는 시스템을 제안한다. 먼저 K-최근접 이웃 알고리즘을 활용해 비만의 정도에 따라 사용자를 분류하고, 운동 데이터를 소모 칼로리에 따라 클러스터링 한다. 다음으로 비만의 정도와 운동 레벨에 따라 정해진 추천 점수를 통해 사전 선호도 확률을 계산하고, 베이지안 네트워크를 통해 사후 확률을 구한다. 이를 바탕으로 특이값 분해 알고리즘(SVD)를 활용하여 사용자 맞춤형 운동을 추천한다. 제안 시스템의 성능을 검증하기 위해 비교 실험을 진행하여 회귀 문제 평가 척도인 RMSE 값 측면에서 성능을 분석하였다.

Context-aware application for smart home based on Bayesian network (베이지안 네트워크에 기반한 스마트 홈에서의 상황인식 기법개발)

  • Chung, Woo-Yong;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.179-184
    • /
    • 2007
  • This paper deals with a context-aware application based on Bayesian network in the smart home. Bayesian network is a powerful graphical tool for learning casual dependencies between various context events and obtaining probability distributions. So we can recognize the resident's activities and home environment based on it. However as the sensors become various, learning the structure become difficult. We construct Bayesian network simple and efficient way with mutual information and evaluated the method in the virtual smart home.

An Analysis on Prediction of Computer Entertainment Behavior Using Bayesian Inference (베이지안 추론을 이용한 컴퓨터 오락추구 행동 예측 분석)

  • Lee, HyeJoo;Jung, EuiHyun
    • The Journal of Korean Association of Computer Education
    • /
    • v.21 no.3
    • /
    • pp.51-58
    • /
    • 2018
  • In order to analyze the prediction of the computer entertainment behavior, this study investigated the variables' interdependencies and their causal relations to the computer entertainment behavior using Bayesian inference with the Korean Children and Youth Panel Survey data. For the study, Markov blanket was extracted through General Bayesian Network and the degree of influences was investigated by changing the variables' probabilities. Results showed that the computer entertainment behavior was significantly changed depending on adjusting the values of the related variables; school learning act, smoking, taunting, fandom, and school rule. The results suggested that the Bayesian inference could be used in educational filed for predicting and adjusting the adolescents' computer entertainment behavior.

Bayesian analysis of insurance risk model with parameter uncertainty (베이지안 접근법과 모수불확실성을 반영한 보험위험 측정 모형)

  • Cho, Jaerin;Ji, Hyesu;Lee, Hangsuck
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.1
    • /
    • pp.9-18
    • /
    • 2016
  • In the Heckman-Meyers model, which is frequently referred by IAA, Swiss Solvency Test, EU Solvency II, the assumption of parameter distribution is key factor. While in theory Bayesian analysis somewhat reflects parameter uncertainty using prior distribution, it is often the case where both Heckman-Meyers and Bayesian are necessary to better manage the parameter uncertainty. Therefore, this paper proposes the use of Bayesian H-M CRM, a combination of Heckman-Meyers model and Bayesian, and analyzes its efficiency.

Statistical Life Prediction of Corroded Pipeline Using Bayesian Inference (베이지안 추론법을 이용한 부식된 배관의 통계적 수명예측)

  • Noh, Yoojeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2401-2406
    • /
    • 2015
  • Pipelines are used by large heavy industries to deliver various types of fluids. Since this is important to maintain the performance of large systems, it is necessary to accurately predict remaining life of the corroded pipeline. However, predicting the remaining life is difficult due to uncertainties in the associated variables, such as geometries, material properties, corrosion rate, etc. In this paper, a statistical method for predicting corrosion remaining life is proposed using Bayesian inference. To accomplish this, pipeline failure probability was calculated using prior information about pipeline failure pressure according to elapsed time, and the given experimental data based on Bayes' rule. The corrosion remaining life was calculated as the elapsed time with 10 % failure probability. Using 10 and 50 samples generated from random variables affecting the corrosion of the pipe, the pipeline failure probability was estimated, after which the estimated remaining useful life was compared with the assumed true remaining useful life.

A Study on the Effects of Oil Shocks and Energy Efficient Consumption Structure with a Bayesian DSGE Model (베이지안 동태확률일반균형모형을 이용한 유가충격 및 에너지 소비구조 전환의 효과분석)

  • Cha, Kyungsoo
    • Environmental and Resource Economics Review
    • /
    • v.19 no.2
    • /
    • pp.215-242
    • /
    • 2010
  • This study constructs a bayesian neoclassical DSGE model that applies oil usage. The model includes technology shocks, oil price shocks, and shocks to energy policies as exogenous driving forces. First, this study aims to analyze the roles of these exogenous shocks in the Korean business cycle. Second, this study examines the effects of long-term changes in the energy consumption structure, including the reduction in oil use as a share of energy consumption and improvement in oil efficiency. In the case of oil price shocks, results show that these shocks exert recessionary pressure on the economy in line with those obtained in the previous literature. On the other hand, shocks to energy policies, which reduce oil consumption per capital, result in opposite consequences to oil price shocks, decreasing oil consumption. Also, counterfactual exercises show that long-term changes in the energy consumption structure would mitigate the contractionary effects of oil price shocks.

  • PDF