Acknowledgement
이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (No. 2021R1F1A1047113).
DOI QR Code
본 논문에서는 코로나-19로 인해 홈 트레이닝 시장이 성장하고 있는 상황 속에서 효율적인 운동을 위해 사용자의 식습관, 신체조건, 선호도 등을 바탕으로 적합한 운동을 추천해주는 시스템을 제안한다. 먼저 K-최근접 이웃 알고리즘을 활용해 비만의 정도에 따라 사용자를 분류하고, 운동 데이터를 소모 칼로리에 따라 클러스터링 한다. 다음으로 비만의 정도와 운동 레벨에 따라 정해진 추천 점수를 통해 사전 선호도 확률을 계산하고, 베이지안 네트워크를 통해 사후 확률을 구한다. 이를 바탕으로 특이값 분해 알고리즘(SVD)를 활용하여 사용자 맞춤형 운동을 추천한다. 제안 시스템의 성능을 검증하기 위해 비교 실험을 진행하여 회귀 문제 평가 척도인 RMSE 값 측면에서 성능을 분석하였다.
이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (No. 2021R1F1A1047113).