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Empirical Bayes Estimation of the Probability
of Discovering a New Speciesl)

Jooho Lee?

Abstract

An empirical Bayes estimator of the probability of discovering a new species is
proposed when some prior information is available on the number of species. The
new estimator is shown via simulations to have only a moderate bias and a
smaller RMSE than Good’s estimator when the species population follows a
truncated geometric distribution.

1. Introduction

The estimation of the probability of discovering a new species in a population is an
inferential problem that some statisticians have long struggled with since Good(1953)
proposed a nonparametric estimator. To be more specific, let s be the number of species in
an infinite population and let p = (p1, *, ps) denote the species relative abundances in the
population. Assume that a sample of size n contains ¢ distinct species. Then the probability
of discovering a new species at the (n+1)th observation can be expressed as

Uln)= 2.pi I(Y;=0),

where Y;, i = 1, -, s, denotes the abundance of the ith species in the sample. The
estimator of U(n) that Good derived using a nonparametric Bayesian argument is

Vo= (1/’n)Z':I(Yi= 1).

Much of later work was devoted to studying statistical properties of Good's estimator
and its generalized version (Robbins, 1968, Starr, 1979, and Clayton and Frees, 1987). A few
other estimators were proposed as alternatives, but Clayton and Frees’ nonparametric
maximum likelihood estimator(NPMLE) seems to be the only all-round competitor aside
from its underbiasedness. Although a considerable negative bias that the NPMLE has was
addressed and partly corrected by Lee(1989, 1993), more reduction in bias would be
necessary for the NPMLE to become a superior alternative to Good's estimator.

However, if some prior information is available on the number of species before sampling
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is done, then Good's estimator has no way of using this prior information. In such a
situation, which 1s not so unusual in reality, a parametric Bayesian approach would be more
appropriate. Hill(1968, 1979) is the first statisticlan that used a parametric Bayesian
approach to derive the posterior distribution of the probability of discovering a new species.
Hill's posterior mean and mode, however, are not useful as an estimator due to a heavy
negative bias and a large MSE. Later, Lewins and Joanes(1984) briefly discussed a
generalized version of Hill's estimator, but they did not present it in an explicit form and
failed to provide a formal method for estimating the prior parameters.

The purpose of this paper is to propose an empirical Bayes estimator using the same
approach as in Lewins and Joanes. Unlike in Lewins and Joanes, however, the new
estimator is given in an explicit form and the estimation of the prior parameters is also
discussed in detail.

The posterior probability of discovering a new species is derived in the next section.
Section 3 describes how to estimate prior parameters using actual data. Section 4 presents
the results of small-sample simulation study wunder several hypothetical population
distributions.

2. Posterior Probability of Discovering a New Species

Kempton and Wedderburn(1978) argued that the frequency distribution of the species
abundances can be reasonably well approximated by a gamma distribution. If the
abundances of species in the population constitute independent observations from a gamma
distribution, then it can be seen that the relative abundances jointly follow a Dirichlet
distribution. Therefore, the conditional prior distribution for p given s is assumed to be

[(ks) k-t
o 1 @1

As in Lewins and Joanes, the prior distribution for s is assumed to be the zero-truncated
negative binomial distribution with the density

nzpls)=

n(s) = (s+r—1)[ 87(1-86)°

s | =5 ] 0<8<1, r21, s21 2.2)

Let x = O, x2, ", Xs), X1 2 x2 2 = 2 Xs, denote the species abundances in the sample.

Since no unique labeling is available to the species appearing in the sample, the likelihood
function is given by

ﬂxlp,s)‘%:'?]j "oxi20,i=1, s, Zx, n, (23)

f';- H

S
where R is the set of permutations of {1, -, s} which have distinct Hlpix" and {r, ---,
i
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T s} € R

We first derive the conditional marginal posterior distribution of p; given s to find the
posterior probability of discovering a new species. The conditional marginal posterior
density of p) given s is obtained as

mpilxs) = [ = [2p1x5) dpz ~ dpes
x f fnz(p | s)f(x1p,s)dp2 ~ dps-1

e LY} o

n' r(k+x rz) e r(k+x r,) k+x -1
* ; X r X r )

T((s-Dk+n-x.) *!
. (1-p1) (s-Dk+n-x -1

“——L.’%— ( )2[r(<s Dk+n-x)] pf™!

xi!

. (l'pl) (s-1k+n-xi- 1%:I‘(k+x rz) ]"(k+xr')

L H I'(k+x, kexi-1 (s-Dk+n-xi-1 24
< T (s-Dhrnxy P (1=p1) :

S
where K; is the set of permutations of {1, **, s} - {i{} which have distinct ;I;Izpix" and

{r,, =+, rs} € Ri. Thus the conditional posterior mean of p: given s can be expressed as

t
Z;[r( (s-Dk+n-x)]"! TT Tk+x;) fpf“x'( 1-py) VRl

E(1]x,s) — —
e Dm0 LMo [ oE ™ 1)

[M(ks+n+1)]! g(km) Hr(k+x,->

[T(ks+n)]” 12; TTI'(k+x,

kt+n

-1,
t ks +n

(2.5)

Noting that E(pilx, s) is the same for all i by symmetry, the posterior probability of
discovering a new species is expressed as
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Q=1-E[tE(p1|x5)]|x]
=1-(kt +n)E[(ks +n) | x],

which is exactly the form that Lewins and Joanes provided without any detail. Now we
will proceed one step further to express @ in terms of integrals. The new expression for @
would significantly reduc: the computing time for simulation study in the next section.
From Lewins and Joanes the posterior distribution of s is proportional to

A(s 1) = (1-0)° (SFT71) (9) ("s*:'l)gl, s>t

so that
El(ks+n)! | x]
Stks+m) (s | x)
sf:;tit'(s | x)

) g[k(s+t)+n]'l(1—e) s+t ( S+§:;-1)(s;t) (k(5+2+n—1)'1

S (UL ()

s+t+r-l)

g{[k(s+t)+n][k(s+t)+n—1]"-[k(s+t)]}'1(1-8)s( :

Sy lk(s+D+n-11k(s+0) +n=2] = k(s +D1} H(1-8)* ST

E{[k(S+)Ik(S+t)+1] - [k(S+t)+n]} " (2.6)
E{[k(S+)Ik(S+t)+1] ~ [k(S+£)+n-1]} 1"

where S is a random variable that follows the negative binomial distribution with
parameters 0 and ¢t + r. We need the following lemma developed in Hill(1979) to evaluate
the expectations in (2.6).

Lemma: Let Y be a nonnegative random variable with probability~generating function
M@= EW"), 0 < u=<1. Leta >0, and let b be a nonnegative integer. Then

E[(Y +a)Y+a+1) (Y +a+b)]}
1
= [I(b + 1)]‘1f0 w1 - ) M(w)du,

Since the probability-generating function for S is M(u)={68/[1-(1-8)ul}*"", it follows
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from the lemma that

1
[l"(n+1)]'1f0 u® N (1-w) "M )du

Q=1-(kt+n) - T
[r(n)]'lf0 L (1= M () du
1 kt-1 n ky - (t+r)
e hwraswrn-a-ewtena
=1- - . — - P 2.7
fou (1-2)" 1 [1-(1-8)u*] - **"dy

In particular, if k = 1, then (2.7) reduces to Hill(1979)'s (3.3).

3. Estimation of Prior Parameters

In order to use @ given in (2.7) as an estimator of the probability of discovering a new
species, we need estimate prior parameters, k, 6, and r. A full-fledged empirical Bayes
approach may be used to estimate these hyperparameters from the data. It is, however, not
unusual that an experimenter has some prior information on s in the formm of most likely
value and confidence interval, which can be used to subjectively determine @ and r. The
parameter k reflects the species relative abundances, with larger k corresponding to more
uniform relative abundances. Gill and Joanes(1979) recommended values between 0 and 1
for k, but it is not intuitively easy to subjectively determine the value of k. In this paper
we propose a partial empirical Bayes approach in the sense that only k is estimated from
the data and 6 and r are determined subjectively. Note that there may be more than one
pair of values for 8 and r which have the same prior mode. Among those pairs of values
for @ and r, larger pairs reflect more accurate information on s.

A most commonly used empirical Bayes approach to prior determination is the ML-II
approach, which finds the prior that maximizes the marginal density of x. Using the lemma,
the marginal density of x is seen to be proportional to

m'(x | ny, n2)

t
=( e’) H M erxi) S Lstr=Dl 4 o Tlks)
1-87 {T(k)} & (s (r-12 I(ks+n)
T (kex) }
o —m—- E{[k(S+t)k(S+t)+1] -~ [k(S+t)+n-11} a1
l_1=_1'1r(lc+x;)

1
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Although we can numerically find the value of k which maximizes (3.1) by taking the
derivative and setting to zero, the procedure seems to be too time-consuming to be used
for Monte Carlo simulations with large number of replicates. We instead consider a simpler

approach that is based on the repeat rate. The repeat rate, which is defined as A= Zp?
13

measures how uniform the population is. It takes a value between 0 and 1, with larger
values implying more uneven relative abundances (see Good, 1965, for details). Good
suggested estimating k by equating the expected value of the repeat rate with an estimate
of it. Noting that each p: follows the beta distribution with parameters k and k(s-1) for
given s, we have

.11 - 3 %) - S r
E"(1s) = 5E™(p} | 5) = 31 —reak k)
(3.2)
Flks+DT(k+2)  _k+1
T(k+1)T(ks+2) =~ ks+1
Equating (3.2) with the sample repeat rate A = z.: (xi/n)%, we obtain
Ao _1-1
£ = (33)

Because the resulting estimate of k depends on the unknown parameter s, it could be
determined recursively by substituting for s the prior mode initially and a tentative posterior
mode thereafter in (3.3) until the value of s satisfying (3.3) coincides with the posterior
mode of s. However, as Lewins and Joanes pointed out, this procedure always yields a
posterior mode of s larger than its prior mode and hence too small a value for k.
Therefore, instead of relying on this procedure, we will remove the dependence of k on s
by taking expectation of (3.2) with respect to the prior distribution of s;

E"[E™(\1s)]

k+1

=B sr1

)= e+ 1) f Muuh)du,

where M,(u) is the probability generating function for s. Note that the second equality in
the above follows from Hill's lemma. Since s has the zero-truncated negative binomial
distribution with parameters 6 and r, Ms(u) is given by

Ms(u) =§éus(5+;—l) eri{;ﬁs) - I%r

=87(1-0")"Y[1-(1-8)ul"-1},
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and it follows that

n X2 -_..(_I.(.il_).e_:. ! _ _ ky-r _
EME™ 1 91= =T [11- (- 0041 "du-1)

Thus, for given 0, r, and x, the estimate of k can be obtained by numerically solving the
equation

—-————“;tlgf’r {folu - (1 —e)u"]"du-1}= X, (34)
Here note that
—2-EMER O ) = B ()]
i ey B

where the equality holds if and only if s = 1 a.s. Hence, unless the prior distribution for s
is degenerate at 1, (3.4) has a unique solution in k.

We next examine how sensitive the posterior probability is to changes in prior
parameters using the Mount Kenya data from Lewins and Joanes. The data was obtained
by sampling n = 1043 units from the insect population residing in Mount Kenya area. A
total of 32 species were discovered and their respective abundances are shown in Table 1,
where f; denotes the number of species that have r representatives in the sample.

Table 1. Sample Abandances for the Insect Population in Mount Kenya

r f r f r f r f r f
1 8 5 1 12 1 46 1 19 1
2 3 6 3 18 1 56 1 157 1
3 2 7 2 21 1 95 1 335 1
4 1 10 1 25 1 98 1

Assuming that the prior mode of s is 45 with an 80% Bayesian interval of (35, 55), 9
and r are determined as 0.7 and 107, respectively. Figure 1 shows the posterior means of
probabilities of discovering a new species for various values of X when @ = 0.7 and r =
107. It can be seen that a change in the value of k causes a significant change in the
posterior mean.
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Figure 1. Posterior Means for Different Values of k (& = 0.7 and r = 107)

If the prior mode of s is fixed at 45 but an 80% Bayesian interval is assumed otherwise,
then the values of 8 and r will also be different. For example, 80% interval of (37, 54)
yields 6 = 09 and r = 410, while 80% intervai of (34, 58) yields 6 = 05 and r = 47. For
these three pairs of € and r values, the values of k were estimated using (3.4) and the
resulting posterior means were computed. The results in Table 2 suggest that the value of
k and the resulting posterior mean do not change markedly even with severe changes in 6
and r as long as the prior mode of s is maintained at the same level. This fact will be
further confirmed by the simulation results in the next section. Incidentally, note that for 6
= 0.7 and r = 107 our estimate 0.00324 of the probability of discovering a new species is
almost three times as large as Hill's estimate of 0.00121 resulting from k£ = 1. This
difference might be due to the fact that Hill's estimate effectively assumes the uniform
conditional prior distribution for p given s, and that for relatively large sampies the chance
of discovering a new species is likely to become lower as the population gets more even.

Table 2. Posterior Means for Different Values of € and r

) r k post.mean
A 107 1364 00324
9 410 1365 00306
) 47 1342 00350
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4. Simulation Results

In this section the finite sample performance of the proposed empirical Bayes estimator is
studied by simulation. Good’s estimator, which is the most commonly used one, is taken as
a reference. In order to represent a wide spectrum of unevenness in relative abundances of
a species population, truncated geomeltric distributions having densities
pi=(1-p)p" Y/(1-p%), i =1, =, s, are used with p = 0.9, 08, and 0.7, and s = 100.
Note that the truncated geometric distribution converges to the discrete uniform distribution
on {1, ~, s} as p — 1 and the degenerate distribution at 1 as p — 0, and that p closer
to 1 reflects more even relative abundances. To represent different levels of accuracy in
prior information, four sets of values for & and r were considered; ® = 0.6 and r = 152, 6 =
02 and r = 26, 8= 05 and r = 52, and 8 = 0.7 and r = 354. They give a prior mode of 100,
99, 50, and 151, and an 80% interval of (84, 117), (74, 131), (39, 64), and (133, 170),
respectively. Note that both the first and the second set estimate the number of species
almost correctly but the first set represents more accurate prior information, and that the
third set much underestimates the number of species, whereas the fourth set much
overestimates it. For each combination of species distribution and prior distribution for the
number of species, pseudo-random samples of size 50, 100, and 200 were drawn 1000 times,
respectively, to approximate the means and the root mean square errors(RMSE) of Good's
estimator and the empirical Bayes estimator. Uniform pseudo-random numbers were drawn
using the IMSL subroutine rmun (multiplicative congruential generators with shuffling).
Table 3 shows the summary of simulation results.

For all four prior distributions considered, the empirical Bayes estimator @ has smaller
RMSE than Good's estimator Vo, with the ratio of two RMSE's ranging from 1.01 to 1.49
depending on the species distribution and the sample size. It is against our intuition that
the ratio is not highest when prior information on the number of species is most accurate
® = 06 and r = 152). In fact, the ratio is almost consistently highest when the number of
species is understated in a prior distribution (0 = 0.2 and r = 52), and lowest when the
number of species is overstated (6 = 0.7 and r = 354). This phenomenon could even be
capitalized on if an experimenter gives a prior distribution for the number of species rather
conservatively. Incidentally, note that there does not exist much difference in the ratio
between the first two prior distributions, which suggests that the empirical Bayes estimator
is robust with respect to change of 8 and r as long as the prior mode is fixed. There
appears to be no definite pattern in the ratios as the species distribution or the sample
size changes.

Unlike the NPMLE that is underbiased, the empirical Bayes estimator seems to be
overbiased except when 0 = 05, r = 52, and p = 09, with the percentage bias lying
between -17.2% and 48.0%. @ is least biased when 6 = 05 and r = 52, which can be again
rather advantageous in application if one takes a conservative prior distribution for the
number of species. The percentage bias tends to increase slightly either as the sample size
increases or as the species distribution gets more uneven. Considering both RMSE and bias,
the empirical Bayes estimator performs best when 6 = 05 and r = 52, while it performs
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worst when 6 = 0.7 and r = 354.

Table 3. Comparison of Vo and Q in RMSE
D n E(Un)] E(V, E(Q) RMSE VE)/

RMSE(Vo) RMSE(Q) RMSE(Q)
9 50 18347 18920 .19059
07915 05752 1.37591
100 09288 09521 10975
04121 03370 1.22301
200 04718 04756 05513
02137 01670 1.27988
6=26 8 50 .08681 08992 11234
. 05798 04968 1.16698

100 04438 04486 06025
02822 02551 1.10611

r =152 200 02221 02300 03022
.01504 01282 1.17258
N 50 05413 03560 07379
04677 03987 117321
100 02740 02848 03856
02209 01854 1.19181
200 01442 01391 01932
01153 00937 1.23030
9 50 18544 18680 .19688
08174 06473 1.26272
-100 09408 09412 10806
04174 03410 1.22425
200 04753 04694 05211
02130 01610 1.32316
6 =2 8 50 .08810 08946 11116
.05608 05011 1.11927
100 04491 04477 05727
03027 02542 1.19089
r=126 200 02223 02215 02804
01472 01160 1.26877

a 50 06572 05488 07213
04624 03803 1.21600

100 02831 02801 03719
02477 01978 125248

01826
00899 129637

200 01370

01423
01165




Empirical Bayes Estimation of the Probability of Discovering a New Species 169

Table 3. (continued)

n Bl v Riseo BERD

50 18521 18958 17512

08411 05541 1.41562
100 09455 09456 08928

04316 02094 1.44162
200 04674 04720 03869

02109 01634 120123
50 .08849 08880 10295

05770 04505 1.28078
100 04377 04490 05166

.02854 02099 1.35988
200 02214 02273 02405

01496 01005 1.48814
50 05557 05476 06843

04656 03500 1.33015

100 02783 02795 03450

02348 01765 1.32987
200 01390 01434 01665

01187 00812 1.46215
50 .18686 18976 19491

08119 06041 1.34409
100 09418 08465 11705

.04049 03849 1.05202
200 04723 04735 06202

02134 02108 1.01256
50 08853 08972 11478

05961 05176 1.15161
100 04407 04418 06351

03005 02887 1.04065
200 02218 02231 03255

01500 01421 1.05572
50 .05383 05684 07555

04397 03909 1.12466
100 02753 02790 03977

02160 01968 1.09722
200 01379 01413 02041

01198 01035 1.15784
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5. Conclusion

In this paper we proposed an empirical Bayes estimator of the probability of discovering
a new species when some prior information is available on the number of species.
Irrespective of the accuracy in prior specification, the new estimator appears to have
smaller RMSE but to be more biased than Good’s estimator that is most commonly used. It
seems that RMSE increases and the amount of overbias decreases as the number of
species becomes understated in the prior distribution. Therefore, by specifying the prior
distribution of the number of species on the conservative side, one could expect to reduce
both bias and RMSE. Although not intended to be used in ignorance situations, the
proposed estimator may possibly be used in such situations by conservatively taking the
prior mode of the number of species to be the number of species found in the sample. A
Bayesian interval need also be specified to uniquely determine the hyperparameters 6 and r,
but it may not be so critical due to the robustness of the proposed estimator with respect
to the prior confidence. However, it would be more desirable in these situations to use a
full-fledged empirical Bayes approach where not only k but also @ and r are estimated from
the data. The research in this direction is currently in progress by the auther.
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