• Title/Summary/Keyword: 베이지안추정

Search Result 265, Processing Time 0.023 seconds

베이지안 방법에 의한 K개 지수분포 모수들의 기하평균 추정에 관한 연구

  • Kim, Dae-Hwang;Kim, Hye-Jung
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.11a
    • /
    • pp.169-174
    • /
    • 2002
  • 본 연구는 k개 지수분포 모수들의 기하평균에 대한 베이지안추정 방법을 제시하였다. 이를 위해 Tibshirani가 제안한 직교변환법으로 비정보적 사전확률분포를 도출하여 모수들의 결합사후확률분포를 유도해 내었으며, 이 분포 하에서 가중 몬테칼로 방법을 사용하여 기하평균을 추정하는 절차를 제안하였다. 모의실험과 실제자료의 예를 통해 제안된 베이지안 추정의 유효성 및 효용성을 보였으며, 본 연구에서 제안한 사전확률분포가 전통적인 포함확률을 기준으로 볼 때, Jeffrey의 사전확률분포 보다 더 유효한 추정을 함을 보였다.

  • PDF

일반화혼합회귀 추정량과 베이지안 회귀추정량의 비교

  • 김주성;김영권
    • Communications for Statistical Applications and Methods
    • /
    • v.3 no.3
    • /
    • pp.1-9
    • /
    • 1996
  • 본 논문에서는 일반화 회귀모형의 회귀모수${\beta}$에 대한 사전정보의 형태에 따른 각 추정량들에 대하여 연구하였다. 먼저 사전정보가 ${\beta}$에 대한 사전분포로 주어지는 경우에 해당하는 베이지안 회귀추정량을 제시하였고, 다른 하나는 ${\beta}$에 대한 사전정보모형으로 선형회귀모형식이 주어진 경우의 일반화 혼합회귀추정량에 대하여 연구하였다. 두가지 경우로부터 얻어진 각 추정량의 정도를 알아보기 위하여 각 추정량의 공분산행렬을 이 용하여 서로 비교하여 보았다. 각 추정량의 분산비들을 이용하여 일반적으로 일반화 혼합회귀추정량이 베이지안 회귀추정량들보다 비교적 작은 분산값을 가진다는 결론을 얻었다.

  • PDF

Bayesian Interval Estimation of Tobit Regression Model (토빗회귀모형에서 베이지안 구간추정)

  • Lee, Seung-Chun;Choi, Byung Su
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.5
    • /
    • pp.737-746
    • /
    • 2013
  • The Bayesian method can be applied successfully to the estimation of the censored regression model introduced by Tobin (1958). The Bayes estimates show improvements over the maximum likelihood estimate; however, the performance of the Bayesian interval estimation is questionable. In Bayesian paradigm, the prior distribution usually reflects personal beliefs about the parameters. Such subjective priors will typically yield interval estimators with poor frequentist properties; however, an objective noninformative often yields a Bayesian procedure with good frequentist properties. We examine the performance of frequentist properties of noninformative priors for the Tobit regression model.

Objective Bayesian Estimation of Two-Parameter Pareto Distribution (2-모수 파레토분포의 객관적 베이지안 추정)

  • Son, Young Sook
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.5
    • /
    • pp.713-723
    • /
    • 2013
  • An objective Bayesian estimation procedure of the two-parameter Pareto distribution is presented under the reference prior and the noninformative prior. Bayesian estimators are obtained by Gibbs sampling. The steps to generate parameters in the Gibbs sampler are from the shape parameter of the gamma distribution and then the scale parameter by the adaptive rejection sampling algorism. A numerical study shows that the proposed objective Bayesian estimation outperforms other estimations in simulated bias and mean squared error.

Empirical Bayes Estimation and Comparison of Credit Migration Matrices (신용등급전이행렬의 경험적 베이지안 추정과 비교)

  • Kim, Sung-Chul;Park, Ji-Yeon
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.3
    • /
    • pp.443-461
    • /
    • 2009
  • In order to overcome the lack of Korean credit rating migration data, we consider an empirical Bayes procedure to estimate credit rating migration matrices. We derive the posterior probabilities of Korean credit rating transitions by utilizing the Moody's rating migration data and the credit rating assignments from Korean rating agency as prior information and likelihood, respectively. Metrics based upon the average transition probability are developed to characterize the migration matrices and compare our Bayesian migration matrices with some given matrices. Time series data for the metrics show that our Bayesian matrices are stable, while the matrices based on Korean data have large variation in time. The bootstrap tests demonstrate that the results from the three estimation methods are significantly different and the Bayesian matrices are more affected by Korean data than the Moody's data. Finally, Monte Carlo simulations for computing the values of a portfolio and its credit VaRs are performed to compare these migration matrices.

공변량을 갖는 패널자기회귀 과정에 대한 베이즈추정

  • 신민웅;신기일
    • Communications for Statistical Applications and Methods
    • /
    • v.1 no.1
    • /
    • pp.94-101
    • /
    • 1994
  • 본 논문은 패널(panel) 자기회귀 모형에서 자기회귀 계수의 추정을 베이지안 방법으로 접근하였는데, 이 때 특별히 Gibbs Sampling 방법을 이용하여 사후분포를 계산하였다. 또한 모의 실험을 통하여 자기회귀계수를 Gibbs Sampling 방법으로 추정한 베이지안 추정치가 non-Bayesian 방법으로 구한 추정치보다 더 우월함을 보였다.

  • PDF

A Comparison of Bayesian and Maximum Likelihood Estimations in a SUR Tobit Regression Model (SUR 토빗회귀모형에서 베이지안 추정과 최대가능도 추정의 비교)

  • Lee, Seung-Chun;Choi, Byongsu
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.991-1002
    • /
    • 2014
  • Both Bayesian and maximum likelihood methods are efficient for the estimation of regression coefficients of various Tobit regression models (see. e.g. Chib, 1992; Greene, 1990; Lee and Choi, 2013); however, some researchers recognized that the maximum likelihood method tends to underestimate the disturbance variance, which has implications for the estimation of marginal effects and the asymptotic standard error of estimates. The underestimation of the maximum likelihood estimate in a seemingly unrelated Tobit regression model is examined. A Bayesian method based on an objective noninformative prior is shown to provide proper estimates of the disturbance variance as well as other regression parameters

A Study of the Small Sample Warranty Data Analysis Using the Bayesian Approach (베이지안 기법을 이용한 소표본 보증데이터 분석 방법 연구)

  • Kim, Jong-Gurl;Sung, Ki-Woo;Song, Jung-Moo
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2013.04a
    • /
    • pp.517-531
    • /
    • 2013
  • 보증 데이터를 통해 제품의 수명 및 형상모수를 추정할 때 최우추정법과 같은 전통적인 통계 분석방법(Classical Statistical Method)을 많이 사용하였다. 그러나 전통적인 통계 분석방법을 통해 수명과 형상모수의 추정 시 표본의 크기가 작거나 불완전한 경우 추정량의 신뢰성이 떨어진다는 단점이 있고 또 누적된 경험과 과거자료를 충분히 이용하지 못하는 단점도 있다. 이러한 문제점을 해결하기 위해 모수의 사전분포를 가정하는 베이지안(Bayesian) 기법의 적용이 필요하다. 하지만 보증 데이터분석에 있어서 베이지안 기법을 이용한 연구는 아직 미흡한 실정이다. 본 연구에서는 수명분포가 와이블 분포를 갖는 보증데이터를 활용하여 모수 추정의 효율성을 비교 분석하고자 한다. 이를 위해 와이블 분포의 모수가 대수정규분포를 따르는 사전분포를 갖는 베이지안 기법과 전통적 통계기법인 생명표법(Actuarial method)을 활용하여 추정량을 도출하고 비교 분석하였다. 이를 통해 충분한 관측 데이터를 확보할 수 없는 경우에 베이지안 기법을 이용한 보증 데이터 분석방법의 성능을 확인하고자 한다.

  • PDF

A study on the localization of incipient propeller cavitation applying sparse Bayesian learning (희소 베이지안 학습 기법을 적용한 초생 프로펠러 캐비테이션 위치추정 연구)

  • Ha-Min Choi;Haesang Yang;Sock-Kyu Lee;Woojae Seong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.529-535
    • /
    • 2023
  • Noise originating from incipient propeller cavitation is assumed to come from a limited number of sources emitting a broadband signal. Conventional methods for cavitation localization have limitations because they cannot distinguish adjacent sound sources effectively due to low accuracy and resolution. On the other hand, sparse Bayesian learning technique demonstrates high-resolution restoration performance for sparse signals and offers greater resolution compared to conventional cavitation localization methods. In this paper, an incipient propeller cavitation localization method using sparse Bayesian learning is proposed and shown to be superior to the conventional method in terms of accuracy and resolution through experimental data from a model ship.

A Study on the Lifetime Prediction of Device by the Method of Bayesian Estimate (베이지안 추정법에 의한 소자의 수명 예측에 관한 연구)

  • 오종환;오영환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.8
    • /
    • pp.1446-1452
    • /
    • 1994
  • In this paper, Weibull distribution is applied to the lifetme distribution of a device. The method of Bayesian estimate used to estimate requiring parameter in order to predict lifetime of device using accelerated lifetime test data, namely failure time of device. The method of Bayesian estimate needs prior information in order to estimate parameter. But this paper proposed the method of parameter estimate without prior information. As stress is temperature, Arrhenius model is applied and the method of linear estimate is applied to predict lifetime of device at the state of normal operation.

  • PDF