베이즈주의는 믿음의 정도라는 확률의 의미해석과 수학적 확률론에 의한 계산체계를 기초로 하여 가설과 증거간의 입증(confirmation) 관계를 명료하게 분석한다. 베이즈주의는 증거 E가 가설 H를 입증한다는 것을 PR(HIE&K)-PR(HIK)>0으로 정의한다. 그러나 이러한 분석이 과연 과학자들의 입증개념을 올바로 반영하고 있는가 하는 비판이 오래된 증거(old evidence)의 문제로부터 제기되었다 오래된 증거는 이미 알려진 정보이기 때문에 완전한 확률 값 1을 부여받는다. 이 때 오래된 증거가 가설을 입증할 수 있는가 하는 질문은 베이즈주의자와 실제 과학자 사이에 서로 다른 답변을 도출한다. 먼저 베이즈주의에 따르면 오래된 증거가 가설을 입증할 수 없다. 그것은 PR(EIK)=1일 때 PR(HIK)=PR(HIE&K)의 결과가 도출되기 때문이다. 하지만 과학사의 여러 예들로부터 제시되는 실제 과학자들의 입증개념에 따르면 오래된 증거가 가설을 입증하고 있다. 필자는 이와 같은 입증개념의 이질성 문제가 다만 어떤 증거가 입증 가능한 것인지를 구분해야 하는 질적인(qualitative) 문제일 뿐만 아니라 증거가 가설을 어느 정도 입증하는지 하는 입증도를 정확하게 측정해야 하는 양적인(quantitative) 문제라는 점을 밝힌다. 특히 필자는 양적인 문제를 해결하면 질적인 문제가 자연히 해결된다는 점을 밝히고, 반 프라센이나 가버가 제안한 전략이 모두 질적인 문제만을 다루기 때문에 부분적인 해결책에 지나지 않는다는 점을 밝힘으로써 오래된 증거의 문제의 본질은 양적인 문제에 있다는 점을 주장한다.
Proceedings of the Korean Statistical Society Conference
/
2005.11a
/
pp.133-139
/
2005
베이즈 법칙에서는 사전확률과 우도가 주어지고 어떤 실험결과가 일어났을 때 사후확률을 계산한다. 이러한 사후확률의 계산 문제를 미니탭 매크로를 이용하여 쉽게 계산할 수 있다. 또한 일련의 독립적이고 연속적인 실험결과에 따르는 사후확률도 편리하게 계산할 수 있다. 최근에는 미니탭 한글 Release 14가 출시되어 한글로 결과를 나타낼 수 있도록 매크로를 작성할 수 있다.
The radical probabilitists deny that propositions represent experience. However, since the impact of experience should be propagated through our belief system and be communicated with other agents, they should find some alternative protocols which can represent the impact of experience. The useful protocol which the radical probabilistists suggest is the Bayes factors. It is because Bayes factors factor out the impact of the prior probabilities and satisfy the requirement of commutativity. My main challenge to the radical probabilitists is that there is another useful protocol, q(E|$N_p$) which also factors out the impact of the prior probabilities and satisfies the requirement of commutativity. Moreover I claim that q(E|$N_p$) has a pragmatic virtue which the Bayes factors have not.
Proceedings of the Korea Water Resources Association Conference
/
2020.06a
/
pp.153-153
/
2020
우리나라에선 크고 작은 가뭄 피해가 자주 일어나고 있으며 최근엔 유래 없는 다년가뭄이 발생하면서 가뭄에 대한 경각심이 커지고 있다. 가뭄에 적절하게 대응하여 피해를 경감시키기 위해서는 신뢰도 높은 가뭄 예측이 선행되어야 한다. 이에 본 연구는 앙상블 예측과 베이즈이론(Bayes' theorem)을 수문학적 가뭄지수 중 하나인 SRI(Standardized Runoff Index)에 적용해 가뭄 확률 전망을 실시했으며 이를 EDP(Ensemble Drought Prediction)라고 칭하였다. 국내 8개 댐유역에서 EDP를 생성하고 개선하는 과정은 다음과 같이 진행된다. 우선 TANK모형을 활용한 1개월 선행 유량 예측(Ensemble Streamflow Prediction, ESP)의 결과를 SRI로 변환하여 EDP 확률분포를 생성한다. 그런 다음, EDP를 개선하기 위해 그 기초인 ESP에서 미흡한 토양수분 초기조건을 보완하고자 베이즈이론을 활용했다. APCC(APEC Climate Center)의 위성 관측 SMI(Soil Moisture Index) 자료로 SRI와의 회귀식을 구축, 이를 우도함수로 정의해 사전 EDP 분포를 업데이트한 EDP+ 확률분포를 생성했다. 그 결과, EDP와 EDP+ 모두 심도가 깊은 가뭄을 전망할수록 예측력이 기후학적 예측보다 좋지 않았다. 그럼에도 우도함수로 사용한 회귀식의 정확도가 높을수록 EDP+의 정확도도 향상되는 경향이 나타났으며, 이는 베이즈이론을 사용한다면 가뭄 확률 전망을 개선할 수 있다는 것을 의미하고 있다. 하지만, 확정 전망 정확도는 확률 전망 정확도와는 관계가 없었는데 이는 확정 전망과 확률 전망이 본질적으로 다르기 때문인 것으로 사료된다.
Journal of the Korean Data and Information Science Society
/
v.22
no.6
/
pp.1183-1197
/
2011
The prior distribution is the probability distribution we have before observing data. Using Bayes' rule, we can compute the posterior distribution, the new probability distribution, after observing data. Computing the posterior distribution is much easier than before by using Excel VBA macro. In addition, we can conveniently compute the successive updating posterior distributions after observing the independent and sequential outcomes. In this paper we compose some Excel VBA macros for applying Bayes' rule and give some examples.
Journal of the Korean Data and Information Science Society
/
v.23
no.5
/
pp.905-912
/
2012
We are dealing with the Bayes' rule education tool with Excel Macro and its usage example. When an event occurs, we are interested in whether it does under certain conditions or not. In this case, we use the Bayes' rule to calculate the probability. Bayes' rule is very useful in making decision based on newly obtained statistical information. We introduce an efficient self-teaching educational tool developed to help the learners understand the Bayes' rule through intermediate steps and descriptions. The concept and examples of intermediate steps such as conditional probability, multiplication rule, law of total probability, prior probability and posterior probability could be acquired through step-by-step learning. All the processes leading to result are given with diagrams and detailed descriptions. By just clicking the execution button, users could get the results in one screen.
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.727-729
/
2005
나이브베이즈분류기($na\ddot{i}ve$ Bayes classifier)는 학습, 적용 및 계산자원 이용의 측면에서 매우 효율적인 모델이다. 또한, 그 분류 성능 역시 다른 기법에 비해 크게 떨어지지 않음이 다양한 실험을 통해 보여져 왔다. 특히, 데이터를 생성한 실제 확률분포를 나이브베이즈분류기가 정확하게 표현할 수 있는 경우에는 최대의 효과를 볼 수 있다. 하지만, 실제 확률분포에 존재하는 조건부독립성(conditional independence)이 나이브베이즈분류기의 구조와 일치하지 않는 경우에는 성능이 하락할 수 있다. 보다 구체적으로, 각 자질변수(feature variable)들 사이에 확률적 의존관계(probabilistic dependency)가 존재하는 경우 성능 하락은 심화된다. 본 논문에서는 이러한 나이브베이즈분류기의 약점을 효율적으로 해결할 수 있는 자질변수의 통합기법을 제시한다. 자질변수의 통합은 각 변수들 사이의 관계를 명시적으로 표현해 주는 방법이며, 특히 상호정보량(mutual information)에 기반한 통합 변수의 선정이 성능 향상에 크게 기여함을 실험을 통해 보인다.
Journal of the Korean Association of Geographic Information Studies
/
v.11
no.2
/
pp.108-120
/
2008
This paper discusses the prediction of deforestation areas using probability models from forest census database, Geographic information system (GIS) database and the land cover database. The land cover data was analyzed using remotely-sensed (RS) data of the Landsat TM data from 1989 to 2001. Over the analysis period of 12 years, the deforestation area was about 40ha. Most of the deforestation areas were attributable to road construction and residential development activities. About 80% of the deforestation areas for residential development were found within 100m of the road network. More than 20% of the deforestation areas for forest road construction were within 100m of the road network. Geographic factors and vegetation change detection (VCD) factors were used in probability models to construct deforestation occurrence map. We examined the size effect of area partition as training area and validation area for the probability models. The Bayes model provided a better deforestation prediction rate than that of the regression model.
A Bayesian approach is suggested to the multi-proportions randomized response model. O'Hagan's (1987) Bayes linear estimator is extended to the inference of unrelated question-type randomized response model. Also some numerical comparisons are provided to show the performance of the Bayes linear estimator under the Dirichlet prior.
본 논문은 베이즈주의가 확률론을 이용해서 제거적 귀납을 정교하게 발전시키고 있다고 주장한다. 이를 위해 본 논문은 두 가지 작업을 진행한다. 하나는 제거적 귀납이 무엇인가 하는것이고 다른 하나는 제거적 귀납이 베이즈주의에 기여하는 바가 무엇인가 하는 것이다. 먼저 본 논문은 제거적 귀납이 참인 가설을 포함하는 가능한 가설들의 총체로부터 경쟁가설들을 연역적 또는 귀납적으로 제거하고 남는 가설을 선택하는 추론형식임을 밝히고, 이 때 베이즈주의는 제거적 귀납을 정교하게 발전시킨 모습이기 때문에 제거적 귀납으로부터 기술적으로 도움 받을 측면은 없다고 주장한다. 그 대신 본 논문은 베이즈주의가 과학방법론으로 발전되는 데에서 직면하는 여러 가지 문제점을 해결하는 방법에 대해 제거적 귀납으로부터 조언을 얻을 수 있다고 주장한다. 이와 같은 논의를 통해 본 논문은 베이즈주의와 제거적 귀납주의의 결합은 유용한 과학방법론을 만들 수 있을 것으로 전망한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.