Proceedings of the Korea Water Resources Association Conference (한국수자원학회:학술대회논문집)
- 2020.06a
- /
- Pages.153-153
- /
- 2020
Improvement in probabilistic drought prediction method using Bayes' theorem
베이즈이론을 이용한 가뭄 확률 전망 기법 고도화
- Published : 2020.06.24
Abstract
우리나라에선 크고 작은 가뭄 피해가 자주 일어나고 있으며 최근엔 유래 없는 다년가뭄이 발생하면서 가뭄에 대한 경각심이 커지고 있다. 가뭄에 적절하게 대응하여 피해를 경감시키기 위해서는 신뢰도 높은 가뭄 예측이 선행되어야 한다. 이에 본 연구는 앙상블 예측과 베이즈이론(Bayes' theorem)을 수문학적 가뭄지수 중 하나인 SRI(Standardized Runoff Index)에 적용해 가뭄 확률 전망을 실시했으며 이를 EDP(Ensemble Drought Prediction)라고 칭하였다. 국내 8개 댐유역에서 EDP를 생성하고 개선하는 과정은 다음과 같이 진행된다. 우선 TANK모형을 활용한 1개월 선행 유량 예측(Ensemble Streamflow Prediction, ESP)의 결과를 SRI로 변환하여 EDP 확률분포를 생성한다. 그런 다음, EDP를 개선하기 위해 그 기초인 ESP에서 미흡한 토양수분 초기조건을 보완하고자 베이즈이론을 활용했다. APCC(APEC Climate Center)의 위성 관측 SMI(Soil Moisture Index) 자료로 SRI와의 회귀식을 구축, 이를 우도함수로 정의해 사전 EDP 분포를 업데이트한 EDP+ 확률분포를 생성했다. 그 결과, EDP와 EDP+ 모두 심도가 깊은 가뭄을 전망할수록 예측력이 기후학적 예측보다 좋지 않았다. 그럼에도 우도함수로 사용한 회귀식의 정확도가 높을수록 EDP+의 정확도도 향상되는 경향이 나타났으며, 이는 베이즈이론을 사용한다면 가뭄 확률 전망을 개선할 수 있다는 것을 의미하고 있다. 하지만, 확정 전망 정확도는 확률 전망 정확도와는 관계가 없었는데 이는 확정 전망과 확률 전망이 본질적으로 다르기 때문인 것으로 사료된다.