• Title/Summary/Keyword: 베이시안

Search Result 87, Processing Time 0.021 seconds

A Discrete Time Approximation Method using Bayesian Inference of Parameters of Weibull Distribution and Acceleration Parameters with Time-Varying Stresses (시변환 스트레스 조건에서의 와이블 분포의 모수 및 가속 모수에 대한 베이시안 추정을 사용하는 이산 시간 접근 방법)

  • Chung, In-Seung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1331-1336
    • /
    • 2008
  • This paper suggests a method using Bayesian inference to estimate the parameters of Weibull distribution and acceleration parameters under the condition that the stresses are time-dependent functions. A Bayesian model based on the discrete time approximation is formulated to infer the parameters of interest from the failure data of the virtual tests and a statistical analysis is considered to decide the most probable mean values of the parameters for reasoning of the failure data.

  • PDF

Realistic Estimation Method of Compressive Strength in Concrete Structure (콘크리트 구조물의 합리적인 압축강도 추정기법 연구)

  • Oh, Byung-Hwan;Yang, In-Hwan
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.241-249
    • /
    • 1999
  • To estimate the compressive strength of concrete more realistically, relative large number of data are necessary. However, it is very common in practice that only limited data are available. The purpose of the present paper is therefore to propose a realistic method to estimate the compressive strength of concrete with limited data in actual site. The Bayesian method of statistical analysis has been applied to the problem of the estimation of compressive strength of concrete. The mean compressive strength is considered as the random parameter and a prior distribution is selected to enable updating of the Bayesian distribution of compressive strength of concrete reflecting both existing data and sampling observations. The updating of the Bayesian distribution with increasing data is illustrated in numerical application. It is shown that by combining prior estimation with information from site observation, more precise estimation is possible with relatively small sampling. It is also seen that the contribution of the prior in determining the posterior distribution depends on its sharpness or flatness in relation to the sharpness or flatness of the likelihood function. The present paper allows more realistic determination of concrete strength in site with limited data.

Facial Local Region Based Deep Convolutional Neural Networks for Automated Face Recognition (자동 얼굴인식을 위한 얼굴 지역 영역 기반 다중 심층 합성곱 신경망 시스템)

  • Kim, Kyeong-Tae;Choi, Jae-Young
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.4
    • /
    • pp.47-55
    • /
    • 2018
  • In this paper, we propose a novel face recognition(FR) method that takes advantage of combining weighted deep local features extracted from multiple Deep Convolutional Neural Networks(DCNNs) learned with a set of facial local regions. In the proposed method, the so-called weighed deep local features are generated from multiple DCNNs each trained with a particular face local region and the corresponding weight represents the importance of local region in terms of improving FR performance. Our weighted deep local features are applied to Joint Bayesian metric learning in conjunction with Nearest Neighbor(NN) Classifier for the purpose of FR. Systematic and comparative experiments show that our proposed method is robust to variations in pose, illumination, and expression. Also, experimental results demonstrate that our method is feasible for improving face recognition performance.

An Optimization Method of Neural Networks using Adaptive Regulraization, Pruning, and BIC (적응적 정규화, 프루닝 및 BIC를 이용한 신경망 최적화 방법)

  • 이현진;박혜영
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.1
    • /
    • pp.136-147
    • /
    • 2003
  • To achieve an optimal performance for a given problem, we need an integrative process of the parameter optimization via learning and the structure optimization via model selection. In this paper, we propose an efficient optimization method for improving generalization performance by considering the property of each sub-method and by combining them with common theoretical properties. First, weight parameters are optimized by natural gradient teaming with adaptive regularization, which uses a diverse error function. Second, the network structure is optimized by eliminating unnecessary parameters with natural pruning. Through iterating these processes, candidate models are constructed and evaluated based on the Bayesian Information Criterion so that an optimal one is finally selected. Through computational experiments on benchmark problems, we confirm the weight parameter and structure optimization performance of the proposed method.

  • PDF

Real-Time Place Recognition for Augmented Mobile Information Systems (이동형 정보 증강 시스템을 위한 실시간 장소 인식)

  • Oh, Su-Jin;Nam, Yang-Hee
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.5
    • /
    • pp.477-481
    • /
    • 2008
  • Place recognition is necessary for a mobile user to be provided with place-dependent information. This paper proposes real-time video based place recognition system that identifies users' current place while moving in the building. As for the feature extraction of a scene, there have been existing methods based on global feature analysis that has drawback of sensitive-ness for the case of partial occlusion and noises. There have also been local feature based methods that usually attempted object recognition which seemed hard to be applied in real-time system because of high computational cost. On the other hand, researches using statistical methods such as HMM(hidden Markov models) or bayesian networks have been used to derive place recognition result from the feature data. The former is, however, not practical because it requires huge amounts of efforts to gather the training data while the latter usually depends on object recognition only. This paper proposes a combined approach of global and local feature analysis for feature extraction to complement both approaches' drawbacks. The proposed method is applied to a mobile information system and shows real-time performance with competitive recognition result.

On Codebook Design to Improve Speaker Adaptation (음성 인식 시스템의 화자 적응 성능 향상을 위한 코드북 설계)

  • Yang, Tae-Young;Shin, Won-Ho;Kim, Weon-Goo;Youn, Dae-Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.5-11
    • /
    • 1996
  • The purpose of this paper is to propose a method improving the performance of a semi-continuous hidden Markov model(SCHMM) speaker adaptation system which uses Bayesian Parameter reestimation approach. The performance of Bayesian speaker adaptation could be degraded in case that the features of a new speaker are severely different from those of a reference codebook. The excessive codewords of the reference codebook still remain after adaptation proess. which cause confusion in recognition process. To solve such problems, the proposed method uses formant information which is extracted from the cepstral coefficients of the reference codebook and adaptation data. The reference codebook is adapted to represent the formant distribution of a new speaker and it is used for Bayesian speaker adaptation as an initial codebook. The proposed method provides accurate correspondence between reference codebook and adaptation data. It was observed that the excessive codewords were not selected during recognition process. The experimental results showed that the proposed method improved the recognition performance.

  • PDF

Control of Time-varying and Nonstationary Stochastic Systems using a Neural Network Controller and Dynamic Bayesian Network Modeling (신경회로망 제어기와 동적 베이시안 네트워크를 이용한 시변 및 비정치 확률시스템의 제어)

  • Cho, Hyun-Cheol;Lee, Jin-Woo;Lee, Young-Jin;Lee, Kwon-Soon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.930-938
    • /
    • 2007
  • Captions which appear in images include information that relates to the images. In order to obtain the information carried by captions, the methods for text extraction from images have been developed. However, most existing methods can be applied to captions with fixed height of stroke's width. We propose a method which can be applied to various caption size. Our method is based on connected components. And then the edge pixels are detected and grouped into connected components. We analyze the properties of connected components and build a neural network which discriminates connected components which include captions from ones which do not. Experimental data is collected from broadcast programs such as news, documentaries, and show programs which include various height caption. Experimental result is evaluated by two criteria : recall and precision. Recall is the ratio of the identified captions in all the captions in images and the precision is the ratio of the captions in the objects identified as captions. The experiment shows that the proposed method can efficiently extract captions various in size.

A Development of Wireless Sensor Networks for Collaborative Sensor Fusion Based Speaker Gender Classification (협동 센서 융합 기반 화자 성별 분류를 위한 무선 센서네트워크 개발)

  • Kwon, Ho-Min
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.2
    • /
    • pp.113-118
    • /
    • 2011
  • In this paper, we develop a speaker gender classification technique using collaborative sensor fusion for use in a wireless sensor network. The distributed sensor nodes remove the unwanted input data using the BER(Band Energy Ration) based voice activity detection, process only the relevant data, and transmit the hard labeled decisions to the fusion center where a global decision fusion is carried out. This takes advantages of power consumption and network resource management. The Bayesian sensor fusion and the global weighting decision fusion methods are proposed to achieve the gender classification. As the number of the sensor nodes varies, the Bayesian sensor fusion yields the best classification accuracy using the optimal operating points of the ROC(Receiver Operating Characteristic) curves_ For the weights used in the global decision fusion, the BER and MCL(Mutual Confidence Level) are employed to effectively combined at the fusion center. The simulation results show that as the number of the sensor nodes increases, the classification accuracy was even more improved in the low SNR(Signal to Noise Ration) condition.

Pattern Classification of Multi-Spectral Satellite Images based on Fusion of Fuzzy Algorithms (퍼지 알고리즘의 융합에 의한 다중분광 영상의 패턴분류)

  • Jeon, Young-Joon;Kim, Jin-Il
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.7
    • /
    • pp.674-682
    • /
    • 2005
  • This paper proposes classification of multi-spectral satellite image based on fusion of fuzzy G-K (Gustafson-Kessel) algorithm and PCM algorithm. The suggested algorithm establishes the initial cluster centers by selecting training data from each category, and then executes the fuzzy G-K algorithm. PCM algorithm perform using classification result of the fuzzy G-K algorithm. The classification categories are allocated to the corresponding category when the results of classification by fuzzy G-K algorithm and PCM algorithm belong to the same category. If the classification result of two algorithms belongs to the different category, the pixels are allocated by Bayesian maximum likelihood algorithm. Bayesian maximum likelihood algorithm uses the data from the interior of the average intracluster distance. The information of the pixels within the average intracluster distance has a positive normal distribution. It improves classification result by giving a positive effect in Bayesian maximum likelihood algorithm. The proposed method is applied to IKONOS and Landsat TM remote sensing satellite image for the test. As a result, the overall accuracy showed a better outcome than individual Fuzzy G-K algorithm and PCM algorithm or the conventional maximum likelihood classification algorithm.

Denoising the Gaussian Noise by the Bayes Techique (Bayes 기법에 의한 가우시안 잡음제거)

  • Woo, Chang-Yong;Park, Nam-Chun;Kim, Jae-Hwan;Joo, Chang-Bok;Shin, Wee-Jae;Lee, Sang-Hoon;Kim, Sung-Il
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2005.11a
    • /
    • pp.217-220
    • /
    • 2005
  • 베이시안 기법의 잡음제거는 사진정보를 모형화하여 베이스 정리에 의해 사후정보를 계산하는 방법이다. 웨이블릿 변환 영역에서 각 대역의 원 신호 히스토그램을 일반화된 라플라시안 분포로 모형화하여 사전정보로 사용가능하다. 잡음 신호의 히스토그램에서 모형을 추정하기 위해서는 잡음편차가 필요하다. 이 논문에서는 단조변환을 이용하여 웨이블릿 변환된 잡음신호 각 대역의 편차를 추정한 후 이 편차에 가중치를 적용하여 모수를 추정한 후 베이스 기법으로 잡음을 제거하였다. 그리고 그 결과를 위너필터에 의해 잡음제거 된 결과와 PSNR로 비교하였다.

  • PDF