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Ha ol
Oh, Byung-Hwan Yang, In-Hwan

ABSTRACT

A Pzue AHSD FUAd FERE F4E QAL SAGACoR we dddolest I
gelth 28 AR GEFE B ABH 7] WEel FHo) oleigo] Uk wapd,
ATl E Ae RS M 2AEY A FHLE 3¢ A8 FelAA WA )
Be =qstd 2aE JE5 PAL ANSGY. @A, 2aEY BE FEREE $8Y
52 aedth 2aE GEFEe oA dulolg e Hel AVHEREE 7129 AuE W
ot} AW, SEFFE YA BHL M AT AFHBREE ADREREY SEF
2 23l Ugddd. 2aE 23 @ A4S 4UH FAAZRE 238 ARE o
g3l #ANE FAAAT. FANGARE AhHez AL A5 ZHARE ALANE 4
Aol Fhe AFHELES FHE ¢ Uk AL 8ol F3 YT B, SEPF PE AAT
ol W@ AASEREY AT AUAA 27 AFHEEEY AR FFE AL R
o vepith £ =Rl AAH PR AL AR2PARE ANLE FeAA FEFFol A
e Helzn dow dAd #8374 888 4 U Ao ARd

* AElY Mgt EEFET wg B2 =20 45 £2/& 19991 88 UMK BHI2 =
=AY gYAY(FR) 71EATA AT W FAIS 19904 10830 Eo|5Ee AXMSHEUCE

Z32|E8s|X| H11242% 1999.4 241



1. Introduction

The estimation of concrete strength has been
major subject of interest in non-destructive
testingl'zk’. A common procedure in the
estimation of concrete strength is the analysis
of test data from site. Compressive strength of
concrete is uncertain input variable for
structural analysis or evaluation. The stochastic
nature of concrete has prompted the
development of mathematical methods for
compressive strength.

It is still desirable to have many compressive
strength data at a site that will be used in
structural evaluation. However, a frequently
encountered situation is that of making a
preliminary evaluation of the strength in site
with limited observational data. Classical
statistical techniques are not adequate to
characterize the concrete strength at such sites
due to very few limited data. In this paper,
the Bayesian technique is used to estimate
realistically the compressive strength of
concrete with limited data.

Bayesian estimation is a powerful tool that
can be used to combine information from a
expert knowledge with site-specific information.
Geyskens et al? have recently used this
approach to improve their prediction of elastic
modulus of concrete and Kajner et al’ to
forecast the progression of roughness in
hot-mix asphalt concrete overlays using data
and expert judgement. The objective of this
paper is to propose a realistic method which
can be wused to estimate the compressive
strength of concrete in site with limited data.

2. Mathematical Theory

2.1 Bayesian Theorem

242

The Bayesian approach has many advantages
in the area of engineering planning and
designS). It systematically combines
uncertainties associated with randomness and
those arising from error of estimation and
prediction. It provides a formal procedure for
systematic  updating of information and
increases the prediction precision.

In the Bayesian approach the underlying
probability distribution of a basic random
variable, denoted X, is assumed to be known,
but the parameters of the distribution are
considered random with a distribution of their
own, referred to as the prior. All available
intuitive and judgmental information, as well as
objective assessments, are quantified to choose
the prior distribution, p(8), in which the
unknown parameters have been considered as
6. Subsequently observed values of X can be
formally combined with the prior distribution of
@ through the use of the Baye's theorem to
obtain an updated posterior distribution,
(8| x), from which decisions and inferences
are made.

Let L(8]| x) denote the likelihood function,
then Baye’'s theorem can be expressed as
follows:

Klx) = cL(8]x) p0) (D

in which ¢ = a normalizing constant; L(8] x)
= likelihood function of the sample given &
(@) = prior probability of 6, that is, before
availability of experimental information and
p(81 x) = posterior probability of &, that is,
probability that has been revised in the light of
experimental outcome x.

It is observed from Eq. (1) that both the
prior distribution and the likelihood function
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contribute to the posterior distribution of 6.
The prior information enters the posterior
probability density function{(pdf) via the prior
pdf, whereas all of the sample information
enters via the likelihood function. In this
manner judgmental and observational data are
combined properly and systematically.

Given a set of observed values xy, x5,°", x,,
which represent a random sample from a
population of X with underlying density
£.(X), the likelihood function can be written

as

L(6| x) = L(6| xl’xz’“.’xn)

- 11 FAxi 1 6) @)

in which f/{x; | 6)=probability distribution of
the basic random variable, X, given & and =

=number of observations of X. The posterior
distribution is the combination of the prior
information and the likelihood function. Just as

the prior distribution reflects beliefs about &
prior to experimentation, so (81| x) reflects
the updated beliefs about @ after observing the

sample x.
2.2 Bayesian Formulation

Suppose that an unbiased method of
experimental measurement is available and that

an observation x made by this method follows
a normal distribution with mean € and
standard deviation o If now a single
observation x is made, the standardized
likelihood function is represented by a normal
curve centered at x with standard deviation
0;. Then Bayesian theorem can be applied to
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show how knowledge regarding 8 is modified
by the information coming from measurement
data.

Assuming that a prior is distributed
normally with its mean f; and standard

deviation g, then a prior for parameter & is

expressed as

p(a)=7—27%60 exp[ _%(_q%o_o_) ] @

and the likelihood function of & is proportional
to a normal function®

L(8]x) exp[—‘%“( 0;")2] (4)

Then the posterior distribution of & given the
data x is

[ L1 one) ds
= —mML (5)
[ _Re1xde
in which,

o [_A[[6=60\ [ 8—x)\?
rotw=en{=3(757) +(15*) ]
Using the identity

A(z—a)*+ B(z—b)?

_ PRY: AB Y
= (A+ B)(z c)+A+B(a b* 6

. 1
with ¢= (A+B (Aa+ Bb)

We can write
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60— 06, 2 9 x\°
( 9y >+( 9! )
= (6 + o D(6-0*+d 7

where 4= —‘Lo—_:“z‘(o‘o_zﬁwo‘f%)
1

o 2+

and d is a constant independent of . Thus,
A0l x)= exp(—%) X
exo[ ~F (02 + 0D (6- DY ®
so that
f_o;fw! x)=exp(—g) X
f_mwexp[———%—(oﬁ-i-dfz)(ﬁ—p)z]dﬁ

=V2r (67 2+ 072V exp(—d/2)(©)

It follows that

(0.0—‘2+0.1—2)1/2
2r

(0| x)= X

exp[ 5 (o "+ 07D (6= 9] 10)
which is normal distribution.

Therefore, the updated statistics or the
posterior distribution of @ given x, M8 x),
can be calculated
variance as follows.

as the mean and the

—l;)‘o_l'_—wl(wo 6y + wix) (11a)

5 = w0+ w (11b)

The posterior mean 6 is a weighted
average of the prior mean 6, and the
observation x, the weights being proportional
to wy; and w; which are, respectively, the

reciprocal of the variance of the prior
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distribution of @ and that of the observation.

Also, the likelihood function of & given =»
independent observations from the normal

population N(8, 6%, is

L(8|x) «< exp[—%(%)z] (12)

The result in Eq. (11) can thus be applied
as if x were a single observation with
variance %/, that is, with weight #/0°. The
posterior distribution of @ obtained by

combining the likelihood function in Eq. (12)
with a normal prior N(8,, d3) is the normal
distribution, which can be expressed as follows.

1

9, = m(woﬁ(ﬁ— Wax) (13a)
_LZ = wyt+w, (13b)
On

where, wy, = —;7 and w, = —o%
0

3. Numerical Application for
Estimating Compressive Strength
of Concrete

The strength of concrete cylinders which
were made by writers in an actual prestressed
concrete box girder bridge in Korea” is to be
evaluated. Concrete cylinders were cast under
construction of bridge. The data were taken
from results of laboratory test in construction
site. From the 53 test strengths measured,
samples were randomly selected for this
numerical example.

3.1 Sequential Estimation of
Concrete Strength
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At a site with limited observational data, the
choice of the prior distribution is obtained by
consideration of all related information such as
previous experience at similar sites or previous
work. The distribution of concrete strength
were proposed by MirzaS), Bartlett” and
Tabsh'”. The standard deviation is assumed to
be less than 0.2 times the mean strength.

Consider a case for which all information
available prior to sampling leads to estimates of
mean of 450 kg/cm® and standard deviation of
45 kg/cm®, respectively. The use of Eq. (3)
vields the prior probability density function of
the compressive strength of concrete cylinders.
Now with = observations of the sample, the
prior distribution is updated to obtain the
posterior distribution through Eq. (13). The
results of Bayesian estimation are shown in
Table 1 and Fig. 1 which show the sequential
nature of the Bayesian updating process.

Table 1 Posterior distribution parameters after
obtaining observational data at site

Posterior distribution parameters
Number of
. Mean Standard deviation
observations ( #)
( kg/cm®) ( kg/cm®)
0 450.0 45.0
3 469.3 206
10 479.9 12.2
30 494.1 6.4

The posterior distribution after 3 observation
serves as the prior for the next set of 7
observations. The posterior after 10
observations then serves as the prior for the
next set, and so on. Theoretically, as the
number of observations increases, the variance
of compressive strength should approach zero.
Fig. 1 shows the tendency for the variance of
the Bayesian compressive strength distribution

to decrease with increasing number of
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observations. The emphasis placed on site
measurements should increase as the number of
site-specific measurements increase. This point
is apparent by examining the posterior mean
given in Table 1. For the asymptotic limit as

n—o0, the posterior mean is equal to site

mean.
.07
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Fig. 1 Prior and posterior distributions of the
compressive strength of concrete

3.2 Effect of Sample Size of Site
Measurements for Compressive
Strength

For Bayesian technique, desirable feature is
that the technique provides reasonable results
even for small data sets. This point will be
examined by considering the spread of pdfs.
The effect of small sample size on the spread
of the site and posterior distributions will be
illustrated.

The prior, site, and posterior distributions
using the first three observations and three
other observations are shown in Figs. 2(a) and
(b), respectively. Consider a case for which

prior distribution has mean value of 450 kg/ cm?

and  standard 45 kgl om?,
respectively. Assume that the experimental

deviation of
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design had been changed to collect only three
data. If only the first three values is collected,
then the resulting analysis is as shown in Fig.
2(a). Here the site standard deviation is 75.4

kg/cm®. On the other hand, if those three data
is collected to be those values with narrow
spread distribution, the posterior distributions
shown in Fig. 2(b) would be obtained. The site

standard deviation is now only 22.1 kg/cm?.
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Fig. 2 Bayesian analysis with three sampling

For the data subset using the first three
values(Fig. 2(a)) the mean value posterior is
4609 kg/cm®, and for the data subset using

three values with narrow spread
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distribution(Fig. 2(b)) the mean value of
posterior is 4717 kg/cm?®, which indicate that
respective mean values of two posteriors are
almost same. However, for the data subset
using the first three values the standard
deviation is 312 kg/cm?®, and for the data
subset using three values with narrow spread
distribution the standard deviation is 12.2
kg/ cm?.

The standard deviation . of the posterior
distribution is smaller than those of prior and
site distributions. In comparison to site values,
posterior standard deviations are considerably
smaller. Considering that the posterior estimates
are more reliable and smaller than either of the
other two distributions, the present method
represents a much improvement in the
estimation of compressive strength of concrete.

3.3 Effect of the Prior Distribution
on the Posterior Distribution of
Concrete Strength

Suppose two prior distributions, p4{8) and
p(0), are concerned with obtaining more
accurate estimates of concrete strength. Prior
distribution p4(8) is approximately represented
by a normal distribution centered at 600 kg/ cm’
with a standard deviation of 20 kg/cm®, N(60,
20", while prior distribution p5(68) has little
previous information and rather vague prior
beliefs are normal
distribution, N(400, 807). Considering that the
sample mean of three observations is 4725
kg/cm?, then the likelihood function is shown
in Fig. 3(b). These posterior distributions are
shown in Fig. 3(c). It is seen that after three

observations posterior distributions are much

represented by the
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closer than prior distributions, although they
still differ considerably. It is seen that prior
p4(0), relatively speaking, did not learn much
from the observational data, while prior px(8)
learned a great deal.

Suppose 47 further independent observations
are made and the sample mean of the entire 50
observations is 4942 kg/com?. Now  the
likelihood is the normal function centered at
494.2 kg/cm® with standard deviation of ofVa=

5.1 kg/cm® as shown in Fig. 3(d).
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Fig. 3 Posterior distributions for different priors

Thus the posterior distributions of p4(8 | x)

and pp(0 | x) are NGX.7, 497 and N

(4938, 5089,
distributions which are shown in Fig. 3(e) are,

respectively.  These two

for all practical purpose, the same. After 50
observations, A and B would be in almost
complete agreement which indicates that the
prediction is almost perfect. This is because the
information coming from the data almost
completely overrides prior differences. In this
numerical example, the contribution of the prior
in determining the posterior distribution of
parameter & is seen to depend on its sharpness
or flatness in relation to the sharpness or
flatness of the likelihood with which it was to
be combined.
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4. Conclusions

A method of establishing the realistic
compressive strength of concrete at a site with
limited information has been proposed. The
estimation of actual concrete strength is
necessary especially when conducting a site
assessment. Due to the limited observational
data, classical statistical methods are inadequate
and thus a Bayesian inference has been applied
here to estimate the compressive strength of
concrete. The compressive strength of concrete
has been modeled with a normal prior
distribution, and a closed form has been
obtained for the Bayesian distribution for the
estimation of compressive strength of concrete.
The prior distribution was combined with
site~-specific information to obtain posterior
distribution.

Application to actual compressive strength
data from concrete cylinder has demonstrated
that by combining prior estimation with
information from observation more precise
estimation is possible with relatively small
sampling. It is also seen that the contribution
of the pror in determining the posterior
distribution depends on its sharpness or flatness
in relation to the sharpness or flatness of the
likelihood function. The proposed method allows
more realistic determination of concrete strength
with limited site data.
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ABSTRACT

To cstimate the compressive strength of concrete more realistically, relative large number of data
are necessary. However, it is very common in practice that only limited data are available. The
purpose of the present paper is therefore to propose a realistic method to estimate the compressive
strength of concrete with limited data in actual site. The Bayesian method of statistical analysis
has been applied to the problem of the estimation of compressive strength of concrete. The mean
compressive strength is considered as the random parameter and a prior distribution is selected to
enable updating of the Bayesian distribution of compressive strength of concrete reflecting both
existing data and sampling observations. The updating of the Bayesian distribution with increasing
data is illustrated in numerical application. It is shown that by combining prior estimation with
information from site observation, more precise estimation is possible with relatively small
sampling. It is also seen that the contribution of the prior in determining the posterior distribution
depends on its sharpness or flatness in relation to the sharpness or flatness of the likelihood
function. The present paper allows more realistic determination of concrete strength in site with
limited data.

Keywords : compressive strength, concrete, Bayesian estimation, prior distribution,
posterior distribution, likelihood function, updating, field data
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