• Title/Summary/Keyword: 베어링 고장 진단

Search Result 45, Processing Time 0.023 seconds

Induction Motor Bearing Early Failure Detection Via A Motor Current Signal Analysis (전동기 전류 신호 해석을 통한 유도전동기 베어링 초기고장 검출)

  • Woo, Hyeok-Jae;Song, Myung-Hyun;Kang, Eui-Sung;Park, Kyu-Nam;Kim, Kyung-Min
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2304-2306
    • /
    • 2002
  • 베어링 고장진단은 대부분 진동센서에 의한 근접 탐침에 의존하고 있어 설치 및 측정 상에 제약이 따른다. 최근 들어 전동기 전류를 이용한 베어링 고장진단의 가능성이 제시되고 있으나 베어링의 초기고장에 대한 연구는 없었다. 본 연구에서는 전동기 전류를 이용하여 베어링 외륜의 초기고장을 검출할 수 있는 기법을 제시하였다. 이 기법은 처리 데이터를 줄이고 신속한 고장검출을 위하여 고장진단 주파수 대역 설정방법을 제시하였으며 유도전동기 베어링 외륜 고장검출 실험을 통하여 이 기법의 유용성을 보였다.

  • PDF

Quantitative NDE Thermography for Fault Diagnosis of Ball Bearings with Micro-Foreign Substances (미세 이물질이 혼입된 볼베어링의 고장 진단을 위한 정량화 열화상에 관한 비파괴평가 연구)

  • Hong, Dongpyo;Kim, Wontae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.4
    • /
    • pp.305-310
    • /
    • 2014
  • In this study, a non-destructive evaluation (NDE) mothod is proposed for ball bearings contaminated with micro foreign substances, which were inserted into a ball bearing to create a defective specimen. The non-contact quantitative infrared thermographic technique was applied for NDE condition monitoring. Passive thermographic experiments were conducted to perform early fault diagnosis, for bearings operated at optimized torque status under a dynamic load condition. The temperature profiles for normal and defective specimens were quantitatively compared, and the thermographic data analyzed. Based on the NDE results, the temperature characteristics and abnormal fault detection of the ball bearing were quantitatively analyzed according to the rise in temperature.

Bearing Fault Diagnosis using Adaptive Self-Tuning Support Vector Machine (적응적 자가 튜닝 서포트벡터머신을 이용한 베어링 고장 진단)

  • Kim, Jaeyoung;Kim, Jong-Myon;Choi, Byeong-Keun;Son, Seok-Man
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.01a
    • /
    • pp.19-20
    • /
    • 2016
  • 본 논문에서는 서포트 벡터 머신 (SVM)의 분류 성능에 영향을 주는 인수인 C와 ${\sigma}$ 값을 적응적으로 최적화할 수 있는 적응적 자가튜닝 SVM을 이용한 베어링의 상태 진단 방법을 제안한다. SVM의 각 인수의 변화에 따른 베어링 상태 진단의 성능 변화 패턴을 분석하여 적합한 인수를 적응적으로 찾을 수 있는 방법을 제안하고, 제안한 방법의 우수성을 검증하기 위해 실제 베어링 신호를 이용하여 기존방법인 격자탐색과의 성능을 비교하였다.

  • PDF

The Detection of Main Spindle Bearing Defect for Machine Tool (공작기계 주축용 베어링 결함검출)

  • 오석영;정의식;임영호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.351-356
    • /
    • 1993
  • 최근의 프로세스 공업화에 있어서 생산Line의 장치나 기계류는 점차 대형화, 고속화,연속화,복잡화되고 있다. 또한, 기계가공공업,자동차공업,기계,전자부품의 가공조립등의 생산설비는 각설비가 고도로 자동화되고 있는 실정으로 공장 전체의 유기체적인 제어 및 감독을 필요로 하고 있다. 마찬가지로 기계부품제작산업도 CNC.FMS등으로 점차 조작화,자동화됨에 따라 공작기계 장치나 기계류등의 이상이나 고장으로 생산 및 품질에 미치는 영향도 종래와 비교할 수 없을 정도로 중요시 되고 있는 실정이다, 이와같이 설비의 안전성을 도모하고 고신뢰도를 부여하기위해서는 기계설비의 이상 및 고장진단이 필수적이며, 공장 자동화와 함께 공작기계자체의 고장 및 이상진단을 실시하고, 검출된 신호의 크기등으로 고장상태를 판정해야만 한다. 공작기계에서 동적인 회전시스템을 이루는 주축용베어링의 손상은 제작하고자 하는 제품의 정밀도 표면거칠기등의 저하 뿐만아니라 시스템 전체의 기능까지도 떨어뜨리는 요인이 될수 있으므로 베어링 상태를 진단하여 송상유무를 판단하는것은 필수적이라 생각된다.

  • PDF

An Intelligent Fault Detection and Diagnosis Approaches using Parzen Density Estimation and Multi-class SVMs (Parzen Density Estimation과 Multi-class SVM을 이용한 지능형 고장진단 방법)

  • Seo, Kwang-Kyu
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.1
    • /
    • pp.87-91
    • /
    • 2009
  • 본 논문은 상대적으로 새로운 기법인 Parzen Density Estimation과 Multi-class SVM을 이용한 지능형 고장 탐색과 진단 방법을 제안하고 있다. 본 연구에서는 롤링 베어링을 대상으로 고장을 탐색하고 진단하기 위한 방법을 제안하는데 Parzen Density Estimation과 Multi-class SVM은 고장 클래스를 잘 표현할 수 있다. Parzen Density Estimation은 새로운 패턴 데이터의 거절과 알려진 데이터 패턴의 밀도의 평가에 의해 새로운 패턴을 찾아낼 수 있고, Multi-class SVM 기반의 방법은 여러 클래스의 고장을 support vector로 표현하여 고장 패턴을 찾아낼 수 있다. 본 연구에서는 실제의 다중 클래스를 가지는 롤링 베어링의 고장 데이터를 사용하여 고장 패턴을 탐색하는 과정을 보여주는데, 커널함수의 적절한 파라미터의 선택에 의한 Multi-class SVM 기반의 방법이 multi-layer perceptron이나 Parzen Density Estimation 방법보다 우수함을 입증한다.

Design and Implementation of a Diagnosis System for Nuclear Fuel Handling Machine (핵연료 교환기 진단시스템의 설계 및 개발)

  • Kang, Gwon-U;Kim, Byung-Ho;Eun, Seong-Bae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.1
    • /
    • pp.241-248
    • /
    • 2011
  • In this paper we proposed and implemented a diagnosis system to control nuclear fuel handling machine. The proposed system consists of data acquisition system, diagnosis algorithm and faults simulator. Since the test on real operation of the fuel handling machine is impossible, we evaluated the proposed system by diagnosis experiments using the faults simulator, with which test signals on abnormal states of the bearing ball and the inner race of the bearing are generated. The experiments showed that resulting diagnosis analysis are consistent with the theoretical expectations.

A Study on the Design of Fault-Diagnosis System for Healing Mill Bearing in Wavelet Transform (웨이브렛 변환을 이용한 압연기 베어링 고장-진단 시스템 설계에 관한 연구)

  • 배영철;김이곤;최남섭;김경민;정양희
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.5
    • /
    • pp.951-961
    • /
    • 2000
  • A diagnosis system that provides early warnings regarding machine malfunction is very important for rolling mill so as to avoid great losses resulting from unexpected shutdown of the production line. But it is very difficult to provide early warnings in rolling mill. Because dynamics of rolling mill is non-linear. This Paper proposes a new method for diagnosis of rolling mill using wavelet transform(W) to solve this problem. Proposed method that measures the vibration signals of rolling mill on-line and analyze it using wavelet to acquire pattern data. And we design a fault-diagnosis system that diagnose a rolling mill using this data. Validity of the new method is asserted by real numerical data experiment.

  • PDF

Development of smart car intelligent wheel hub bearing embedded system using predictive diagnosis algorithm

  • Sam-Taek Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.1-8
    • /
    • 2023
  • If there is a defect in the wheel bearing, which is a major part of the car, it can cause problems such as traffic accidents. In order to solve this problem, big data is collected and monitoring is conducted to provide early information on the presence or absence of wheel bearing failure and type of failure through predictive diagnosis and management technology. System development is needed. In this paper, to implement such an intelligent wheel hub bearing maintenance system, we develop an embedded system equipped with sensors for monitoring reliability and soundness and algorithms for predictive diagnosis. The algorithm used acquires vibration signals from acceleration sensors installed in wheel bearings and can predict and diagnose failures through big data technology through signal processing techniques, fault frequency analysis, and health characteristic parameter definition. The implemented algorithm applies a stable signal extraction algorithm that can minimize vibration frequency components and maximize vibration components occurring in wheel bearings. In noise removal using a filter, an artificial intelligence-based soundness extraction algorithm is applied, and FFT is applied. The fault frequency was analyzed and the fault was diagnosed by extracting fault characteristic factors. The performance target of this system was over 12,800 ODR, and the target was met through test results.

A Study on Sensor Module and Diagnosis of Automobile Wheel Bearing Failure Prediction (차량용 휠 베어링의 결함 예측을 위한 센서 모듈 및 진단 연구)

  • Hwang, Jae-Yong;Seol, Ye-In
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.47-53
    • /
    • 2020
  • There is a need for a system that provides early warning of presence and type of failure of automobile wheel bearings through the application of predictive fault analysis technologies. In this paper, we presented a sensor module mounted on a wheel bearing and a diagnostic system that collects, stores and analyzes vehicle acceleration information and vibration information from the sensor module. The developed sensor module and predictive analysis system was tested and evaluated thorough excitation test equipment and real automotive vehicle to prove the effectiveness.

Stator Current Processing Based Technique for Induction Motors Bearing Faults Diagnosis (유도전동기 베어링고장진단을 위한 고정자전류프로세싱 기술개발)

  • Hong, Won-Pyo;Yoon, Sup-Chung;Kim, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.311-318
    • /
    • 2005
  • 이 논문은 다른 종류의 유도전동기 구름베어링 손상을 유도전동기 고정자 전류신호해석을 통하여 검출하고 실시간으로 손상을 진단하는 알고리즘을 개발하였다. 유도전동기 구름베어링의 손상을 검출하기 위하여 정상적인 베어링을 갖는 유도전동기, 축정열에 불량을 가지고 있는 전동기와 베어링 외륜에 구멍을 가지고 있는 2가지 종류의 비정상 베어링을 갖는 유도전동기 3set를 실험시스템을 구축하였다. 또한 유도전동기의 구름베어링시스템의 비정상적인 상태에서 고정자전류을 검출하기 위하여 TMS320F2407 DSP 칩을 이용하여 데이터 획득보드를 개발하였다. 이 고정자전류신호를 해석을 통하여 베어링 손상을 검출하기 위한 방법으로 FPT, 웨이브렛 분석 및 내적에 의한 평균신호패던에 의한 분석결과를 제시하였다. 특히 내적에 의한 신호분석을 통하여 베어링 손상 여부를 실시간으로 진단할 수 있는 새로운 알고리즘과 분석방법을 제시하였다.

  • PDF