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1. Introduction

Rolling bearings play an important role as prime
components due to ther
reliability. Although rolling bearings are reliable, the
possible of unexpected faults is unavoidable, The
issue of robustness and reliability is very important to
guarantee the good operational condition. Therefore,
condition nonitaring  of rolling bearings has  received
considerable attention in recent vears. Early fault diagnosis
and condition monitoring can reduce the  consequential
dampge, breakdown nmintenance and reduce the spare
parts of mventories. Moreover it can increase the prolong
machine life, performance, and avalahility of machine.

Many researchers have proposed the techniques and

of wvarlous machines

system for the diagnosis process. Various techniques have
done by using motor curent signature apalysis  [10],
electromagnetic torque measurerrent [9), acoustic analysis
[2], and partial discharge [7]. However, the most popular
in technicques is using vibration analysis and stator current
analysis because of their easy measurability, high accuracy
and reliahility. Recently, the application of the intelligent
system for condition nonitoring and fault diagnosis 1s
used In memy areas such as support vector machines
(SVMs), as well as neural networks, have been
extensively enployed to solve classification problens [4,
5. Detection of new pattamns can also be done by
estimating density of the known pattem data and
rejecting new pattern data, which are below a probahility
threshold, in low probability areas [5].
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The density estimation can be based on a model of
the data, for instance a mxture of Gaussian
distributions, or estimated by Parzen windows. This
method requires large numbers of training data to make
religble probebility density  estimation, and has  its
drawbacks. In a Gaussian mixture the murber of kemels
has to be chosen befarehand The assumption of Gaussian
distributions can be a severe approximation. Parzen density
estimation requires a width parameter that determines
how smmocth the resulting probahility density distribution
is. When large differences in density exist, the Parzen
method will give poor results in low—density areas.

Another approach of new detection 1s to find bounded
regions that contain all data, and use restricted shapes for
their class boundaries like hyperspheres. Support vector
data description which inspired on the support vector
classifier and proposed by Tax and Duin [8], seems to
give a fledble and tight data description among the
boundary approaches. Since the support vector data
description focuses on the boundary description and not
on the complete data density, the required number of data
is smaller than for, eg., the Parzen density estimation.

In this paper, the multi-class SVMs and the Parzen
density estimation are adopted to model known fault
class samples, and to detect the new fault class
samples that are different from those that have been
modeled. Some fault class samples of the rolling
bearing are taken to validate the proposed approaches.

2. Research Background

2.1 Parzen density estimation

Parzen density estimation is a non-parametric
density estimation method. It does not require any
assumption on the form of the probability density
function, which is usually true for a real-world
problem [1]. In this work, we use the standard
Parzen density estimation. Here, the probabilities of
the object in the tramning set give the value of the
threshold on the probability.

PParzen (Z) = |LX1 E K(Za zk) (1)

e x

with a Gaussian Kernel K(z, z"):
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K(z, 2¥F)=

where n is the dimensionality of the data space
and s is the smoothing parameter. We can use a
leave-one-out method to estimate the optimal
smoothing  parameter. Parzen density  estimation
method are designed to search efficiently and robustly
the largest cluster, which represents the pose
information for the best match among different classes.

2.2 Support Vector Machines (SVMs)

In this section, we give a brief overview of SVMs
and then review two methods for dealing with
multi-class SVMs [61.

2.2.1 Support Vector Machines

Given a set of M training set {(x;, y;) ), where z;
is data and y; =1 or —1 is the associated label,
SVMs find the optimal linear hyperplane for good
generalization performance by maximizing the margin
which is the distance between the hyperplane and
the nearest data point of each class in which the
nearest data point is called support vector.

By SVMs learning, we can construct the following
decision surface:

f(x):sjgn(g(x))sgn(< w, T >+b) 3)
= Zaiyi[((a:, xl) +b=0

where N, is the number of support vectors, a; is
coefficient weight, z; is support vector, and K is a
kernel function to transform input space into feature
space. The output of the ¢(z) gives an algebraic
measure of the distance from z to the optimal
hyperplane [6]. This measure can be understood as a
confidence value of an input « for a given SVMs.

2.2.2 Multi—class SVMs

To get multi-class cdlassifiers, it is common to
construct a set of binary classifiers. One can construct
M—class classifier using the following procedure [9):
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A set of binary classifiers, fi,**-, f,,, are trained R e e — E———
to separate one class from the rest. Combined —gﬁ‘w‘W"'MMJFM"MWWW]’WWWw‘ j —ee—— -
function F(x) is obtained by finding the maximal e —

output among the outputs of those M classifiers.
This can be denoted as follows:
Flz)= argmax f,(z), where f, (z) 4

= Eyka};kj(az, z,)+ b
k=1

(2) pairwise strategy

A set of binary classifiers is constructed for each
possible pair of classes. For M class, this results in
M(M+1)/2 binary classifiers. In this case, the
winner can be decided in A/—1 comparison times
by tournament method in tree structure.

Though there are some differences in training and
testing phase between one—versus—all strategy and
pairwise
recognition show similar classification performance. In
our approach, the one-versus-all strategy is adopted.

strategy, the experiments on pattem

3. Experiments using the Proposed
Approaches

In this study, we consider four different operating
conditions of the rolling bearing which are (i) normal
conditions without faults; (i) a ball fault; (ii) an
inner race fault; (iv) an outer race fault. The ball
bearing considered is installed in the drive-end of
the motor; faults are introduced into it using the
(EDM) method. An
accelerometer is mounted on the motor housing at
the drive-end of the motor to acquire the vibration
signals from the bearing. The data recorder with a
sampling frequency of 12 kHz is equipped with
low—pass filters at the input stage for anti-aliasing.

Each set of vibration data used to the new
detection experiments comes from two different loads
(and rotation speeds) of the motor, i.e 0.73kw (and
1,772rpm), 1.470kw (and 1,750rpm).

The experiments are carried out for each fault
class considered a novelty, and the rests (including
normal condition class) considered a target class,
which are described by the support vectors.

electro-discharge machining

<Fig. 1> Decomposition of vibration data under four
different operating conditions

3.1 Feature Extraction of Rolling Bearings

The feature extraction procedure is used in the
literature [3]. To make the signals comparable
regardless of differences in magnitude, the first step
is to preprocess the measured vibration data. The
data of each class 1s normalized using its mean and
standard deviation. Then, the discrete wavelet
transform (DWT) is selected for the data analysis,
which uses the Daubichies-2 wavelet by five levels.

<Fig. 1> shows a combination of four classes of
vibration data under the wavelet decomposition, ie.
the approximation (a5), and five levels of details
(d1—db). A DWT feature vector is defined for a

given vibration data as v = [vy, vy, ..., v;,] Wwith its
element defined as:
v, =0,/0,, i=1,2,..,6, (7

where ¢ =1,2,...,6 comresponds to dl, d2, ...,d5,
ab, respectively and o, is the standard deviation of the i
th decomposition, e.g. o is the standard deviation of d1;
o,.; 1s the standard deviation of ith decomposition of a
reference signal (in this case we have chosen a data set
acquired under normal operating condlition and zero load).

v, and vg are Crest factor of d5, ab respectively, v,
and vy, are Impulse factor of d1, d2 respectively. The
four time domamn statistical parameters have been added
in the feature vector except for v; — vg used in [3].

In our expenments, 400 10-dimensional feature
vectors In each class are randomly extracted from
each set of vibration data corresponding to one of four
different operating conditions of the rolling bearing.
The 240 feature vectors (60%) among them are used
for training, and &0 feature vectors (20%) for the
validation, the others (202¢) for testing in each dataset.
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3.2 Fault Detection Experiments using
MLP, Parzen Density
and Multi—Class SVMs

Estimation

In this work, the multi-layer perceptron (MLP), one
of the artificial neural network techniques, is used for
a comparative algorithm to evaluate the performance of
the proposed Parzen density estimation and nulti—class
SVMs. We briefly describe the experimental resuits of
MLP and Parzen density estimation and focus on
those of multi—class SVMs.

As mentioned before, the goal of this study is to
identify the fault class from other three classes data
that correspond to normal conditions without faults
and the other faults.

First of all, we use a three-layer perceptron
trained on the target data, used for the fault
detection. This network has structures of 10-16-4
for each layer unit numbers, and has a total correct
recognition rate 93.3% in training dataset. But the
new fault detection rate of test dataset is 725%
(58/&0). Although the threshold setup is not rigorous,
and the network structures are not optimal, we can
find that the MLP used for new fault detection
based on thresholding output of these networks seem
to give unsatisfactory results.

Secondly, we dhow the new fault detection results using
Parzen density estination method, Correspordingly used for
three experiments above MLP such as outer race fault,
inner race fault and ball fault The Parzen density
estimation method provides training dataset = 9.224 test
dataset = 66096 training dataset = V&Y%, test dataset =
%% and traning dataset = B3% test dataset 6.0%
respectively on their testing dataset for s = 5 %
Obviously, it provides a slightly better new detection rate
of training dataset, but a relatively lower recognition rate
of test dataset in aur experinments. The latter is caused
because of the overtraining of the Parzen density estimation.

Thuss it cannot entirely meet the performence requirement.

Finally, we present the fault detection results using
multi-class SVMs. The RBF kemel function is adapted
in this study. The RBF kemel function has two
parameters such as C and v. We select v = 1%, 5%,
10%, and C = 2-10 for RBF kemel parameter in all
our experiments. As described before, the test results

of training and test dataset provide respectively.

<Hg. 2> shows the new fault detection performance of
ball fault by multi-class SVMs on the training and test
dataset under varying v and C. As shown in <Fig. 2>,
the detection rates of both training and test dataset are
very sensitive to the kemel parameter €, and decreases
sharply as C increases, especidly for v = 196 or 5% In
this case, the miti-class SVVs will be unable to find
compact surrounding  boundaries for data of each class
when the « is small. B, for v =10 % and € = 2-3 the
multi-class SVMs can also give good results with the
new detection rate in the range of 883%6-B3%6 of training
dataset and in the range of 8.3 9%696.3 % of test dataset.

For the second experiment based on multi—class
SVMs, the inner race fault is assigned to be a new
fault class. As shown in <Fig. 3>, in contrast to the
test success rate, the new detection rate of training
dataset is very sensitive to the kerel parameter C,
and decreases sharply as C increases, especially for
v = 1%, or 5%. In this case, the experiment results
and trends are similar to those of the ball fault case.

For the last experiment based on multi—class SVMs,
the outer race fault is assigned to be a new fault
class. <Fig. 4> shows the new fault detection
performance of outer race fault by multi-class SVMs
on the training and test dataset under varying v and C.
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<Fig. 2> The ball fault detection performance based
on multi—class SVMs
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<Fig. 3> The inner race fault detection performance
based on multi-class SVMs
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<Fig. 4> The outer race fault detection performance
based on multi-class SVMs

As shown in <Fig. 4>, all new fault examples in the
training dataset can be detected successfully, which is
Irelevant to parameters v and C in our chosen
ranges. The fault detection rate for new examples of
the test dataset also ranges from 8.2 % to 983 % for
v = 1%, C = 2-10, and 83 % to BO % for v = 5%,
C = 2-10. The trend of results for v = 1% is better
than those of the others in last experiments.

Obvicusly, the multi-class SVMs gives better
detection results for the new fault class than those of
MLP and Parzen density estimation described previously.

4. Conclusion

In this paper, we applied the relatively new
methods such as Parzen density estimation and
multi-class SVMs besides MLP for intelligent fault
detection and diagnosis of the rolling bearing. They
were successfully applied for fault detection in training
dataset, but the experiment results of test dataset is
different. Especially, the experiment results of
multi—class SVMs based detection and classification are
satisfactory in case of choosing the optimal values of
kernel parameters and that are very important in
SVMs model selection. Therefore the proposed
method, multi-class SVMs served to exemplify that
kemel-based leaming algorithms are very competitive
on a variety problems with different characteristics and
can be employed as an efficient method for intelligent
machine fault detection, classification and diagnosis.
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