• Title/Summary/Keyword: 배터리 열화 모델

Search Result 6, Processing Time 0.019 seconds

Improved SOH Prediction Model for Lithium-ion Battery Using Charging Characteristics and Attention-Based LSTM (충전 특성과 어텐션 기반 LSTM을 활용한 개선된 리튬이온 배터리 SOH 예측 모델)

  • Hanil Ryoo;Sang Hun Lee;Deok Jai Choi;Hyuk Ro Park
    • Smart Media Journal
    • /
    • v.12 no.11
    • /
    • pp.103-112
    • /
    • 2023
  • Recently, the need to prevent battery fires and accidents has emerged, as the use of lithium-ion batteries has increased. In order to prevent accidents, it is necessary to predict the state of health (SOH) and check the replacement timing of the battery with a lot of degradation. This paper proposes a model for predicting the degradation state of a battery by using four battery degradation indicators: maximum voltage arrival time, current change time, maximum temperature arrival time, and incremental capacity (IC) that can be obtained in the battery charging process, and LSTM using an attention mechanism. The performance of the proposed model was measured using the NASA battery data set, and the predictive performance was improved compared to that of the general LSTM model, especially in the SOH 90-70% section, which is close to the battery replacement cycle.

Building battery deterioration prediction model using real field data (머신러닝 기법을 이용한 납축전지 열화 예측 모델 개발)

  • Choi, Keunho;Kim, Gunwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.243-264
    • /
    • 2018
  • Although the worldwide battery market is recently spurring the development of lithium secondary battery, lead acid batteries (rechargeable batteries) which have good-performance and can be reused are consumed in a wide range of industry fields. However, lead-acid batteries have a serious problem in that deterioration of a battery makes progress quickly in the presence of that degradation of only one cell among several cells which is packed in a battery begins. To overcome this problem, previous researches have attempted to identify the mechanism of deterioration of a battery in many ways. However, most of previous researches have used data obtained in a laboratory to analyze the mechanism of deterioration of a battery but not used data obtained in a real world. The usage of real data can increase the feasibility and the applicability of the findings of a research. Therefore, this study aims to develop a model which predicts the battery deterioration using data obtained in real world. To this end, we collected data which presents change of battery state by attaching sensors enabling to monitor the battery condition in real time to dozens of golf carts operated in the real golf field. As a result, total 16,883 samples were obtained. And then, we developed a model which predicts a precursor phenomenon representing deterioration of a battery by analyzing the data collected from the sensors using machine learning techniques. As initial independent variables, we used 1) inbound time of a cart, 2) outbound time of a cart, 3) duration(from outbound time to charge time), 4) charge amount, 5) used amount, 6) charge efficiency, 7) lowest temperature of battery cell 1 to 6, 8) lowest voltage of battery cell 1 to 6, 9) highest voltage of battery cell 1 to 6, 10) voltage of battery cell 1 to 6 at the beginning of operation, 11) voltage of battery cell 1 to 6 at the end of charge, 12) used amount of battery cell 1 to 6 during operation, 13) used amount of battery during operation(Max-Min), 14) duration of battery use, and 15) highest current during operation. Since the values of the independent variables, lowest temperature of battery cell 1 to 6, lowest voltage of battery cell 1 to 6, highest voltage of battery cell 1 to 6, voltage of battery cell 1 to 6 at the beginning of operation, voltage of battery cell 1 to 6 at the end of charge, and used amount of battery cell 1 to 6 during operation are similar to that of each battery cell, we conducted principal component analysis using verimax orthogonal rotation in order to mitigate the multiple collinearity problem. According to the results, we made new variables by averaging the values of independent variables clustered together, and used them as final independent variables instead of origin variables, thereby reducing the dimension. We used decision tree, logistic regression, Bayesian network as algorithms for building prediction models. And also, we built prediction models using the bagging of each of them, the boosting of each of them, and RandomForest. Experimental results show that the prediction model using the bagging of decision tree yields the best accuracy of 89.3923%. This study has some limitations in that the additional variables which affect the deterioration of battery such as weather (temperature, humidity) and driving habits, did not considered, therefore, we would like to consider the them in the future research. However, the battery deterioration prediction model proposed in the present study is expected to enable effective and efficient management of battery used in the real filed by dramatically and to reduce the cost caused by not detecting battery deterioration accordingly.

A Study on the capacity degradation impact analysis and simulation based on battery aging model for hybrid vehicles (하이브리드 자동차용 배터리 열화 모델 기반 용량 감소 영향성 분석 및 시뮬레이션 기반 연구)

  • Kim, Jaewon;Park, Jinhyeong;Kim, Jaeyeong;Yoo, Sungil;Kim, Jonghoon
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.377-378
    • /
    • 2020
  • 본 논문에서는 열화에 따른 하이브리드 차량의 연비 특성을 분석하기 위해 시뮬레이션을 통한 연구를 진행하였다. 전기적 특성 실험 기반으로 배터리 내부 파라미터가 열화에 어떤 영향을 미치는지 분석을 하고 이를 기반으로 하이브리드 차량모델을 통해 시뮬레이션을 진행하였다. 분석 결과를 통해 배터리 열화 상태에 따른 State-Of-Charge (SOC) 및 연비효율 그래프의 변화 추이를 비교하였다.

  • PDF

A Study on SOH estimation for lithium-ion battery based on joint estimation between partial capacity and recursive least square estimation method (미소 용량 및 재귀 최소제곱 추정 기법을 이용한 리튬이온 배터리의 SOH 추정 기법 연구)

  • Park, Seongyun;Cho, Inho;Ryu, Joonhyoung;Kim, Youngmi;Park, Sungbeak;Kim, Jonghoon
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.209-211
    • /
    • 2020
  • 운송기관의 온실가스 저감을 위해 배터리-수소연료전지 하이브리드 철도추진시스템에 대한 연구가 활발히 진행되고 있다. 이 중 배터리는 빠른 응답 특성으로 하이브리드 철도추진 시스템의 효율을 극대화 시키기 위해 주요 전원으로 사용되고 있어, 시스템의 안전성 및 신뢰성을 높이기 위해 정확한 열화추정이 요구되고 있다. 본 논문에서는 사전 모델의 수립이 필요하지 않고 미소 용량 및 폐회로 제어가 가능한 재귀 최소제곱 추정 기법을 이용한 리튬이온 배터리의 SOH 추정 기법을 제안하였으며, 1S18P 배터리 모듈을 통해 열화 추정결과를 검증하였다.

  • PDF

Remaining Useful Life Estimation of Li-ion Battery for Energy Storage System Using Markov Chain Monte Carlo Method (마코프체인 몬테카를로 방법을 이용한 에너지 저장 장치용 배터리의 잔존 수명 추정)

  • Kim, Dongjin;Kim, Seok Goo;Choi, Jooho;Song, Hwa Seob;Park, Sang Hui;Lee, Jaewook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.10
    • /
    • pp.895-900
    • /
    • 2016
  • Remaining useful life (RUL) estimation of the Li-ion battery has gained great interest because it is necessary for quality assurance, operation planning, and determination of the exchange period. This paper presents the RUL estimation of an Li-ion battery for an energy storage system using exponential function for the degradation model and Markov Chain Monte Carlo (MCMC) approach for parameter estimation. The MCMC approach is dependent upon information such as model initial parameters and input setting parameters which highly affect the estimation result. To overcome this difficulty, this paper offers a guideline for model initial parameters based on the regression result, and MCMC input parameters derived by comparisons with a thorough search of theoretical results.

CNN based battery SOC estimation using thermal distribution image (CNN 기반 열 분포 영상을 이용한 배터리 SOC 추정 연구)

  • Kwon, Sanguk;Kim, Jaeho;Kim, Yongsoon;Ahn, Jeongho;Choi, Eojin;Pack, Jinu;Kim, Jonghoon
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.453-454
    • /
    • 2019
  • 본 논문은 ESS(Energy Storage System)의 과충전, 과방전으로 인한 열 폭주 현상을 방지하기 위한 사전 연구로 원통형 리튬이온 단일 셀의 충/방전에 따른 열 분포를 열화상 카메라로 촬영하여 분석하였다. 실험을 통한 열 분포 이미지를 학습 데이터로 구성하여, SOC(State of Charge)를 추정하는 CNN(Convolution Neural Network) 모델을 제안한다.

  • PDF