DOI QR코드

DOI QR Code

Remaining Useful Life Estimation of Li-ion Battery for Energy Storage System Using Markov Chain Monte Carlo Method

마코프체인 몬테카를로 방법을 이용한 에너지 저장 장치용 배터리의 잔존 수명 추정

  • Kim, Dongjin (School of Aerospace and Mechanical Engineering, Korea Aerospace Univ.) ;
  • Kim, Seok Goo (School of Aerospace and Mechanical Engineering, Korea Aerospace Univ.) ;
  • Choi, Jooho (School of Aerospace and Mechanical Engineering, Korea Aerospace Univ.) ;
  • Song, Hwa Seob (Hyosung Corporation) ;
  • Park, Sang Hui (Hyosung Corporation) ;
  • Lee, Jaewook (School of Aerospace and Mechanical Engineering, Korea Aerospace Univ.)
  • 김동진 (한국항공대학교 항공우주 및 기계공학과) ;
  • 김석구 (한국항공대학교 항공우주 및 기계공학과) ;
  • 최주호 (한국항공대학교 항공우주 및 기계공학과) ;
  • 송화섭 (효성 중공업) ;
  • 박상희 (효성 중공업) ;
  • 이재욱 (한국항공대학교 항공우주 및 기계공학과)
  • Received : 2016.05.18
  • Accepted : 2016.08.08
  • Published : 2016.10.01

Abstract

Remaining useful life (RUL) estimation of the Li-ion battery has gained great interest because it is necessary for quality assurance, operation planning, and determination of the exchange period. This paper presents the RUL estimation of an Li-ion battery for an energy storage system using exponential function for the degradation model and Markov Chain Monte Carlo (MCMC) approach for parameter estimation. The MCMC approach is dependent upon information such as model initial parameters and input setting parameters which highly affect the estimation result. To overcome this difficulty, this paper offers a guideline for model initial parameters based on the regression result, and MCMC input parameters derived by comparisons with a thorough search of theoretical results.

리튬 이온 배터리의 잔존수명 추정은 품질보증, 운전계획, 교체주기 파악 등을 위해 활용된다는 점에서 그 필요성이 점점 커지고 있다. 본 논문에서는 에너지 저장 장치용 배터리의 잔존 수명을 단일지수 용량열화 모델과 마코프체인 몬테카를로(MCMC) 방법을 이용하여 추정한 결과를 제시한다. MCMC방법은 사전 정보가 제대로 주어지지 않았을 때, 추정결과가 모델 초기값과 입력 설정값에 따라 크게 변하게 되는 단점이 있어, 실제 현장에서 배터리 모델과 추정법에 익숙하지 않은 사용자가 활용하는데 어려움이 있다. 이러한 어려움을 극복하기 위해, 본 논문에서는 베이지안 추론법의 이론식을 전역 탐색하여 구한 이론값과 MCMC 추정값을 비교해서, 초기값과 설정값을 결정하는 과정을 제안한다.

Keywords

References

  1. Seo, B. H., Nguyen, T. H., Lee, D. C., Lee, K. B. and Kim, J. M., 2012, "Condition Monitoring of Lithium Polymer Batteries Based on a Sigma-Point Kalman Filter," Journal of Power Electronics, Vol. 12, No. 5, pp. 778-786. https://doi.org/10.6113/JPE.2012.12.5.778
  2. Bhangu, B. S., Bentley, P., Stone, D. A. and Bingham, C. M., 2005, "Nonlinear Observers for Predicting State-of-Charge and State-of-Health of Lead-Acid Batteries for Hybrid-Electric Vehicles," IEEE Transactions on Vehicular Technology, Vol. 54, No. 3, pp. 784-794.
  3. Andre, D., Nuhic, A., Soczka-Guth, T. and Sauer, D. U., 2013, "Comparative Study of a Structured Neural Network and an Extended Kalman Filter for State of Health Determination of Lithium-ion Batteries in Hybrid Electric Vehicles," Engineering Applications of Artificial Intelligence, Vol. 26, No. 3, pp. 951-961. https://doi.org/10.1016/j.engappai.2012.09.013
  4. Dalal, M., Ma, J., and He, D., 2011, "Lithium-ion Battery Life Prognostic Health Management System Using Particle Filtering Framework," Journal of Risk and Reliability, Vol. 225, No. 1, pp. 81-90.
  5. Nuhic, A., Terzimehic, T., Soczka-Guth, T., Buchholz, M. and Dietmayer, K., 2013, "Health Diagnosis and Remaining Useful Life Prognostics of Lithium-ion Batteries Using Data-driven Methods," Journal of Power Sources, Vol. 239, pp. 680-688. https://doi.org/10.1016/j.jpowsour.2012.11.146
  6. Liu, D., Zhou, J. Pan, D., Peng, Y. and Peng, X., 2015, "Lithium-ion Battery Remaining Useful Life Estimation with an Optimized Relevance Vector Machine Algorithm with Incremental Learning," Measurement, Vol. 63, pp. 143-151. https://doi.org/10.1016/j.measurement.2014.11.031
  7. Yang, W. A., Xiao, M., Wei, Z., Guo, Y. and Liao, W., 2015, "A Hybrid Prognostic Approach for Remaining Useful Life Prediction of Lithium-Ion Batteries," Shock and Vibration, Vol. 2016, Article ID 3838765, 15 pages.
  8. Lee, J., Sung, W. and Choi, J. H., 2015, "Metamodel for Efficient Estimation of Capacity-Fade Uncertainty in Li-Ion Batteries for Electric Vehicles," Energies, Vol. 8, No. 6, pp. 5538-5554. https://doi.org/10.3390/en8065538
  9. Li, X., Miao, J. and Ye, J., 2015, "Lithium-ion Battery Remaining Useful Life Prediction Based on Grey Support Vector Machines," Advances in Mechanical Engineering, Vol. 7, No. 12, pp. 1-8.
  10. Sung, W., Hwang, D. S., Jeong, B. J, Lee, J. and Kwon, T., 2016, "Electrochemical Battery Model and its Parameter Estimator fors Use in a Battery Management System of Plug-in Hybrid Electric Vehicles," International Journal of Automotive Technology, Vol. 17, No. 3, pp. 493-508. https://doi.org/10.1007/s12239-016-0051-8
  11. Sim, S. H., Gang, J. H., An, D. Kim, S. I., Kim, J. Y. and Choi, J. H., 2013, "Remaining Useful Life Prediction of Li-Ion Battery Based on Charge Voltage Characteristics," Trans. Korean Soc. Mech. Eng. B, Vol. 37, No. 4, pp. 313-322.