• Title/Summary/Keyword: 배지온도

Search Result 1,048, Processing Time 0.028 seconds

Thermal Characteristics of Nutrient Solution and Root Media in Recycled Soilless Culture Systems (순환식 무토양재배시스템의 양액 및 배지의 온도변화 특성)

  • Son, Jung-Eek;Park, Jong-Seok
    • Journal of Bio-Environment Control
    • /
    • v.7 no.1
    • /
    • pp.71-77
    • /
    • 1998
  • The root-zone environment is an important factor to the plant growth and it is closely related to the thermal characteristics of the root media. In this study thermal characteristics of root media with ambient environmental conditions were analyzed. The temperatures of nutrient solution as well as inside air of culture bed were measured in Nutrient Film Technique(NFT) and Deep Flow Technique(DFT) systems, and also the temperatures of root media measured in aggregate culture systems , The temperature of nutrient solution of NFT system with as low as 3$\ell$/min of flow rate was 3$^{\circ}C$ higher than that with 5 $\ell$/min of flow rate in the daytime, and the temperature of inside air was 2$^{\circ}C$ higher at night. And the temperature of nutrient solution of DFT system with as low as 0.8 cm of water level was 1-2$^{\circ}C$ higher than that with 1 8 cm in the daytime, and the temperature of inside air was almost same at night. The root-zone temperatures in the perlite and rockwool granulate systems with film mulching were 3$^{\circ}C$ higher than those without film mulching in the daytime. However, the rockwool slab system with film mulching showed the same trend as rockwool granulate system, but relatively higher temperature than any other medium because of the exposure of media surface to the ambient air. Additionally the temperature below the plant was measured 3$^{\circ}C$ lower than that between plants.

  • PDF

Development of Temperature Control Technology of Root Zone using Multi-line Heating Methods in the Strawberry Hydroponics (다선식 가온방식을 이용한 딸기 수경재배의 배지 온도조절 기술 개발)

  • Kim, Ki-Dong;Ha, Yu-Shin;Lee, Ki-Myung;Park, Dae-Heum;Kwon, Soon-Hong;Choi, Won-Sik;Chung, Sung-Won
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.189-194
    • /
    • 2010
  • A multi line electric tube consisted of XL pipes contained with 2~4 hot wires and water in it. The specification of one meter length multi-line electric tube was investigated and the proper number in the multi-line electric tube was determined. A multi line electric tube with three hot wires were found to be the most efficient for the media heating control system. Temperature rise of medium in the rice hulls media was faster than that in the perlite media, showed better insulation effect of rice hulls media. Temperature rise of medium with mulching on the top of the bed was faster than without mulching, resulted in the beneficial effect of temperature rise with mulching. The regression model for the rice hulls media with mulching air temperature of $5^{\circ}C$ were a = -0.1458 and b = -0.1088. Using the model, the temperature rise of medium during low temperature season can be predicted for the various media according to the different depths.

Development of Temperature Control Technology of Root Zone using Evaporative Cooling Methods in the Strawberry Hydroponics (증발 냉각방식을 이용한 딸기 수경재배의 배지 온도조절 기술 개발)

  • Kim, Ki-Dong;Ha, Yu-Shin;Lee, Ki-Myung;Park, Dae-Heum;Kwon, Soon-Gu;Park, Jong-Min;Chung, Sung-Won
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.183-188
    • /
    • 2010
  • It is necessary to develop an efficient and affordable cooling technology and apply the practical system to rural farmhouse, control to adequate growth environment by adjusting temperature of root zone. A study on managing medium temperature of the hydroponics for strawberry cultivation was conducted and feasible evaporative cooling system for the media cooling were as follows: Characteristics of temperature drop were investigated for the evaporative cooling devices using microporous film duct, felt mulching on media surface, and water permeable sheet in culture tank. The evaporative device with water permeable sheet in culture tank was the most efficient and economic on media cooling system.

Effect of Cooling Timing in the Root Zone on Substrate Temperature and Physiological Response of Sweet Pepper in Summer Cultivation (여름 파프리카 수경재배에서 근권 냉방 시간이 근권 온도와 생리적 반응에 미치는 영향)

  • Choi, Ki Young;Ko, Ji Yeon;Yoo, Hyung Joo;Choi, Eun Young;Rhee, Han Cheol;Lee, Yong-Beom
    • Horticultural Science & Technology
    • /
    • v.32 no.1
    • /
    • pp.53-59
    • /
    • 2014
  • This study aimed to determine an appropriate cooling timing in the root zone for lowering substrate temperature and its effect on physiological response of sweet pepper (Capsicum annum L. 'Orange glory') grown on coir substrate in summer, from the July 16 to October 15, 2012. Daily temperature of substrate, root activity, leaf water potential, first flowering date, and the number of fruits were measured by circulating cool water through a XL pipe in the root zone during either all day (all-day) or only night time (5 p.m. to 3 a.m.; night) from the July 23 to September 23, 2012. For comparison, no cooling (control) was also applied. Between the $23^{rd}$ of July and $31^{st}$ of August (hot temperature period), daily average temperatures in substrates were $25.6^{\circ}C$, $26.1^{\circ}C$, and $29.1^{\circ}C$ for the all-day and night treatment, and control respectively. About 1.8 to $5^{\circ}C$ lower substrate temperature was observed in both treatments compared to that of control. In sunny day ($600-700 W{\cdot}m^{-2}{\cdot}s^{-1}$), the highest temperature of substrate was measured between 4 p.m. and 5 p.m. under both the all-day and night treatments, whereas it was measured between 7 p.m. and 8 p.m. under the control. Substrate temperatures during the day (6 a.m. to 8 p.m.) and night (8 p.m. to 6 a.m.) differed depending on the treatments. During the day and night, averaged substrate temperature was lower about $3.3^{\circ}C$ and $4.0^{\circ}C$ for the all-day, and $2.1^{\circ}C$ and $3.4^{\circ}C$ for the night treatment, compared to that of control. In the all-day and night treatment, the TD [TD = temperature of (control)] was greater in bottom than that of other regions of the substrate. Between the day and night, no different TD values were observed under the all-day treatment, whereas under the night treatment there was difference with the greatest degree in the bottom of the substrate. During the hot temperature period, total numbers of days when substrate temperature was over $25^{\circ}C$ were 40, 23 and 27 days for the control, all-day, and night treatment, respectively, and the effect of lowering substrate temperature was therefore 42.5% and 32.5% for the all-day and night treatment, respectively, compared to that for the control. Root activity and leaf water potential of plants grown under the all-day treatment were significantly higher than those under the night treatment. The first flowering date in the all-day treatment was similar to that in the night treatment, but 4-5 day faster than in the control. Also, the number of fruits in both treatments was significantly higher than that in the control. However, there was no effect of root zone cooling on eliminating delay in fruiting caused by excessively higher air temperature (> $30^{\circ}C$), although the substrate temperature was reduced $18^{\circ}C$ to $5^{\circ}C$. These results suggest that the method of cooling root zone temperature need to be incorporated into the lowering growing temperature for growth and fruit set of health paprika.

Effect of Incubation Temperature and pH on Chlamydospores Germination of Cylindrocarpon destructans Causing Root Rot of Panax ginseng (인삼 뿌리썩음병균 Cylindrocarpon destructans의 후막포자 발아에 미치는 배양온도 및 pH의 효과)

  • 조대휘;유연현
    • Journal of Ginseng Research
    • /
    • v.25 no.3
    • /
    • pp.136-140
    • /
    • 2001
  • Effects of incubation temperature and pH on chlamydospore germination of Cylindrocarpon destrcutans (isolate CY-9802) causing root rot of Panax ginseng were studied. Germination rate of the chlamydospores on Czapek solution agar(CSA) was higher than on potato dextrose agar(PDA) at the incubation temperatures tested. The chlamydospores were able to be germinated at range of 5$\^{C}$ to 30$\^{C}$ after 48 hours incubation on CSA. Germination rate was 53.2∼6.27% at range of 15$\^{C}$ to 25$\^{C}$, and the optimum temperature was 20$\^{C}$, whereas they were very low at 30$\^{C}$ on PDA. Germination rate was 43.6% to 47.9% at range of 10$\^{C}$ to 20$\^{C}$, and the optimum temperature was 20$\^{C}$ as well. They were able to be germinated at pH of 5.2 to 8.1 on CSA and 5.2 to 7.2 on PDA. Optimum pHs for the germination on CSA and PDA were from 6.4 to 8.2 and from 5.2 to 6.0, respectively. Mycelial color of the fungus on CSA was pale brown at pH from 5.2 to 6.0 and white from pH 6.4 to 8.1, while it was typical dark brown ar range of pH 5.2 to 7.1 and brown at pH 7.2 on PDA after 21 days incubation.

  • PDF

Growth and Antioxidant Activity of Gynura procumbens by Natural Media Composition in Hydroponic Cultivation Using Organic Nutrient Solution (유기 수경재배 시 천연배지 조성에 의한 명월초 생육 및 항산화 활성)

  • Lee, Kyu-Hoi;Lee, Sung-Hee;Kim, Ju Hyoung;Park, Jae-Ho
    • Korean Journal of Organic Agriculture
    • /
    • v.27 no.3
    • /
    • pp.341-351
    • /
    • 2019
  • Gynura procumbens (Family Asteraceae) is a medicinal plant commonly found in tropical Asia countries such as China, Thailand, Indonesia, Malaysia, and Vietnam. Traditionally, it is widely used in many different countries for the treatment of a wide variety of health ailments such as kidney discomfort, rheumatism, diabetes mellitus, constipation, and hypertension. The objective of this study was to select the natural growth media for hydroponic cultivation of Gynura procumbens. The commercially available thirty four different organic nutrient solutions were analyzed for growing Gynura procumbens. After analysis, two organic nutrient solution were selected, mixed (pH 5.5~6.5 / EC 0.5~1.0 ds/m) and then used as organic fertilizers. Thirty day old seedlings were planted and the environmental conditions of the rhizosphere were also examined to select the natural media composition. The minimum temperature of rhizosphere by type of natural media was highest in cocopeat media and lowest in perlite media. Furthermore, plant growth was examined from 50 days old seedlings, and vermiculite was observed to be most effective and perlite was the least effective component as natural media. The total polyphenol content of the studied plant material was also higher in vermiculite in comparison to other growth media. The Gynura procumbens yields were also higher in vermiculite in comparison to other growth media. Thus, vermiculite can be used to improve Gynura procumbens plant growth as a natural growth media.

Modeling of Medium Temperature Drops of the Elevated-bench Hydroponics for Strawberry Cultivation during Low Temperature Season (저온기 딸기 고설 수경재배시 온실기온에 따른 배지내 온도강하 모델 개발)

  • Park, Jae-Wan;Ha, Yu-Shin;Kim, Ki-Dong;Park, Dae-Heum;Lee, Ki-Myung;Jun, Ha-Joon;Kwon, Soon-Gu;Choi, Won-Sik;Chung, Sung-Won
    • Journal of Bio-Environment Control
    • /
    • v.19 no.3
    • /
    • pp.123-129
    • /
    • 2010
  • A study on modeling of medium temperature drops of the elevated-bench hydroponic system for strawberry cultivation during low temperature season was conducted. Four different conditions were used for the experiment. These consisted of two kinds of bed types (plant, V), four kinds of medium (rice, perlite, rice hulls80% and peatmoss20%, perlite80% and peatmoss20%), two kinds of mulched bed (mulched, non mulched) and four kinds of greenhouse air temperature (l.5, 3.2, 5.0, $6.7^{\circ}C$), and the results were summarized as follows: Temperature drop of medium in the V-bed was slower than that in the plant bed, showing better insulation effect of V-bed. Temperature drop of medium with mulching on the top of the bed was slower than the case without mulching, as a result, the beneficial effect of temperature drop was appeared in mulched bed. Linear regression of the temperature descent rate and the temperature difference between medium and air showed significant correlation. The regression equation for the Pearlite80% and Peatmoss20% in the V-bed was f(x) = -0.2656 + 0.1345x at the $R^2$ of 0.9269. Using the model, the temperature drop during night can be predicted for the various media at the different depths.

Growth and storage characterisitics of fruiting body by nitrogen content of sawdust media and restriction stage temperature during flammulina velutipes cultivation (팽이버섯 재배시 배지 질소함량 및 억제기 온도에 따른 자실체의 생육 및 저장 특성)

  • Kim, Dami;Kim, Kil-Ja;Kim, Seon-Gon;Park, Hye-Sung
    • Journal of Mushroom
    • /
    • v.18 no.4
    • /
    • pp.311-316
    • /
    • 2020
  • The effect of the nitrogen content of sawdust medium (1.2~1.8%) and the restriction stage temperature (2, 4, and 6℃) on the growth and storage characteristics of Flammulina velutipes (winter mushroom) were investigated. With increased nitrogen content, the growth days shortened and the yield of the fruiting body increased. The effect of restriction temperature on the growth of the fruiting body differed depending on the nitrogen content. No difference in restriction temperature was evident for T1 with a low nitrogen content of 1.28%. In medium with a nitrogen content ≥1.55%, the yield and length of the pileus and stipe increased as the restriction temperature decreased. The weight loss ratio according to the storage period did not change according to the nitrogen content in the medium. A low weight loss ratio of 1.50 to 1.93% was observed at a restriction temperature <4℃. When T3 with high nitrogen content in the medium was treated at a restriction temperature of 4℃, the fruiting body color values after 31 days of storage were 84.81 (L) and 6.3 (ΔE). This color change was minute compared to that after other treatments. The sensory characteristics score was 5.2 after 31 days of storage, and the quality remained acceptable for consumption.

The Effect of Root Zone Cooling at Night on Substrate Temperature and Physiological Response of Paprika in Hot Climate (고온기 야간시간 근권냉방이 파프리카 배지온도와 생리적 반응에 미치는 영향)

  • Choi, Ki Young;Ko, Ji Yeon;Choi, Eun Young;Rhee, Han Cheol;Lee, Sung Eun;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.349-354
    • /
    • 2013
  • This study examined a technique for cooling root zone aimed at lowering substrate temperature for sweet pepper (Capsicum annum L. 'Orange glory') cultivation in coir substrate hydroponics during hot season, from the $16^{th}$ of July to $15^{th}$ of October in 2012. The root zone cooling technique was applied by using an air duct (${\varnothing}12$ cm, hole size 0.1 mm) to blow cool air between two slabs during night (5p.m. to 3a.m.). Between the $23^{rd}$ of July and $31^{st}$ of August (hot temperature period), average daily substrate temperature was $24.7^{\circ}C$ under the root zone cooling, whereas it was $28.2^{\circ}C$ under condition of no cooling (control). In sunny day (600~700 W $m^{-2}{\cdot}s^{-1}$), average substrate temperatures during the day (6a.m. to 8p.m.) and night (8p.m. to 6a.m.) were lower about $1.7^{\circ}C$ and $3.3^{\circ}C$, respectively, under the cooling treatment, compared to that of control. The degree of temperature reduction in the substrate was averagely $0.5^{\circ}C$ per hour under the cooling treatment during 6p.m. to 8p.m.; however, there was no decrease in the temperature under the control. The temperature difference between the cooling and control treatments was $1.3^{\circ}C$ and $0.6^{\circ}C$ in the upper and lower part of the slab, respectively. During the hot temperature period, about 32.5% reduction in the substrate temperature was observed under the cooling treatment, compared to the control. Photosynthesis, transpiration rate, and leaf water potential of plants grown under the cooling treatment were significantly higher than those under the control. The first flowering date in the cooling was faster about 4 days than in the control. Also, the number of fruits was significantly higher than that in the control. No differences in plant height, stem thickness, number of internode, and leaf width were found between the plants grown under the cooling and control, except for the leaf length with a shorter length under the cooling treatment. However, root zone cooling influenced negligibly on eliminating delay in fruiting caused by excessively higher air temperature (> $28^{\circ}C$), although the substrate temperature was reduced by $3^{\circ}C$ to $5.6^{\circ}C$. These results suggest that the technique of lowering substrate temperature by using air-duct blow needs to be incorporated into the lowering growing temperature system for growth and fruit set of health paprika.

Isolation of Conditional Lethal Temperature-sensitive Mutants of Bacillus sphaericus (Bacillus sphaericus의 치사감온성 돌연변이체의 분리)

  • Kim, Young Han;Lee, Hyung Hoan
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.1
    • /
    • pp.41-49
    • /
    • 1985
  • Bacillus sphaericus was mutagenized with UV light irradiation and dimethyl sulfate. Thirty-five conditional lethal temperature-sensitive(ts) mutants were isolated at the nonpermissive temperature of $42^{\circ}C$ and classified into three groups by their growth characteristics on the nutrient broth, peptone glucose yeast extract agar and mineral salts agar. First was the lethal ts group, 24 mutants, which did not grow at the nonpermissive temperature, the second, 9 mutants, was the less growth is group whose growth was restricted to one-half, and the third, 2 mutants, was the cold lethal ts group whose growth was restricted at the permissive temperature($25^{\circ}C$and $30^{\circ}C$)

  • PDF