• Title/Summary/Keyword: 배경 정보 복원

Search Result 57, Processing Time 0.024 seconds

An Industry-Strength DVR System using an Efficient Compression Algorithm (효율적인 압축 알고리즘을 이용한 실용화 수준의 DVR 시스템)

  • 박영철;안재기
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.10 no.3
    • /
    • pp.243-250
    • /
    • 2004
  • We describe a practical implementation of DVR (Digital Video Recording) system. And we propose a new image compression algorithm, that input video signal is divided into two parts, a moving target and a non-moving background part to achieve efficient compression of image sequences. This algorithm reorganizes a target area and a back-ground area by use of Macro Block(MB) unit on encoding scheme. The proposed algorithm allows high quality image reconstruction at low bit rates.

Object-based Image Restoration Method for Enhancing Motion Blurred Images (움직임열화를 갖는 영상의 화질개선을 위한 객체기반 영상복원기법)

  • Choung, Yoo-Chan;Paik, Joon-Ki
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.12
    • /
    • pp.77-83
    • /
    • 1998
  • Generally a moving picture suffers from motion blur, due to relative motion between moving objects and the image formation system. The purpose of this paper is to propose teh model for the motion blur and the restoration method using the regularized iterative technique. In the proposed model, the boundary effect between moving objects and background is analyzed mathematically to overcome the limit of the spatially invariant model. And we present the motion-based image segmentation technique for the object-based image restoration, which is the modified version of the conventional segmentation method. Based on the proposed model, the restoration technique removes the motion blur by using the estimated motion parameter from the result of the segmentation.

  • PDF

3-D Building Reconstruction from Standard IKONOS Stereo Products in Dense Urban Areas (IKONOS 컬러 입체영상을 이용한 대규모 도심지역의 3차원 건물복원)

  • Lee, Suk Kun;Park, Chung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.535-540
    • /
    • 2006
  • This paper presented an effective strategy to extract the buildings and to reconstruct 3-D buildings using high-resolution multispectral stereo satellite images. Proposed scheme contained three major steps: building enhancement and segmentation using both BDT (Background Discriminant Transformation) and ISODATA algorithm, conjugate building identification using the object matching with Hausdorff distance and color indexing, and 3-D building reconstruction using photogrammetric techniques. IKONOS multispectral stereo images were used to evaluate the scheme. As a result, the BDT technique was verified as an effective tool for enhancing building areas since BDT suppressed the dominance of background to enhance the building as a non-background. In building recognition, color information itself was not enough to identify the conjugate building pairs since most buildings are composed of similar materials such as concrete. When both Hausdorff distance for edge information and color indexing for color information were combined, most segmented buildings in the stereo images were correctly identified. Finally, 3-D building models were successfully generated using the space intersection by the forward RFM (Rational Function Model).

Spatiotemporal Removal of Text in Image Sequences (비디오 영상에서 시공간적 문자영역 제거방법)

  • Lee, Chang-Woo;Kang, Hyun;Jung, Kee-Chul;Kim, Hang-Joon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.2
    • /
    • pp.113-130
    • /
    • 2004
  • Most multimedia data contain text to emphasize the meaning of the data, to present additional explanations about the situation, or to translate different languages. But, the left makes it difficult to reuse the images, and distorts not only the original images but also their meanings. Accordingly, this paper proposes a support vector machines (SVMs) and spatiotemporal restoration-based approach for automatic text detection and removal in video sequences. Given two consecutive frames, first, text regions in the current frame are detected by an SVM-based texture classifier Second, two stages are performed for the restoration of the regions occluded by the detected text regions: temporal restoration in consecutive frames and spatial restoration in the current frame. Utilizing text motion and background difference, an input video sequence is classified and a different temporal restoration scheme is applied to the sequence. Such a combination of temporal restoration and spatial restoration shows great potential for automatic detection and removal of objects of interest in various kinds of video sequences, and is applicable to many applications such as translation of captions and replacement of indirect advertisements in videos.

A Breakthrough in Sensing and Measurement Technologies: Compressed Sensing and Super-Resolution for Geophysical Exploration (센싱 및 계측 기술에서의 혁신: 지구물리 탐사를 위한 압축센싱 및 초고해상도 기술)

  • Kong, Seung-Hyun;Han, Seung-Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.4
    • /
    • pp.335-341
    • /
    • 2011
  • Most sensing and instrumentation systems should have very higher sampling rate than required data rate not to miss important information. This means that the system can be inefficient in some cases. This paper introduces two new research areas about information acquisition with high accuracy from less number of sampled data. One is Compressed Sensing technology (which obtains original information with as little samples as possible) and the other is Super-Resolution technology (which gains very high-resolution information from restrictively sampled data). This paper explains fundamental theories and reconstruction algorithms of compressed sensing technology and describes several applications to geophysical exploration. In addition, this paper explains the fundamentals of super-resolution technology and introduces recent research results and its applications, e.g. FRI (Finite Rate of Innovation) and LIMS (Least-squares based Iterative Multipath Super-resolution). In conclusion, this paper discusses how these technologies can be used in geophysical exploration systems.

Derivation of Geostationary Satellite Based Background Temperature and Its Validation with Ground Observation and Geographic Information (정지궤도 기상위성 기반의 지표면 배경온도장 구축 및 지상관측과 지리정보를 활용한 정확도 분석)

  • Choi, Dae Sung;Kim, Jae Hwan;Park, Hyungmin
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.6
    • /
    • pp.583-598
    • /
    • 2015
  • This paper presents derivation of background temperature from geostationary satellite and its validation based on ground measurements and Geographic Information System (GIS) for future use in weather and surface heat variability. This study only focuses on daily and monthly brightness temperature in 2012. From the analysis of COMS Meteorological Data Processing System (CMDPS) data, we have found an error in cloud distribution of model, which used as a background temperature field, and in examining the spatial homogeneity. Excessive cloudy pixels were reconstructed by statistical reanalysis based on consistency of temperature measurement. The derived Brightness temperature has correlation of 0.95, bias of 0.66 K and RMSE of 4.88 K with ground station measurements. The relation between brightness temperature and both elevation and vegetated land cover were highly anti-correlated during warm season and daytime, but marginally correlated during cold season and nighttime. This result suggests that time varying emissivity data is required to derive land surface temperature.

Visual quality enhancement of three-dimensional photon-counting integral imaging using background noise removal algorithm (배경 잡음 제거 알고리즘을 적용한 3차원 광자 계수 집적 영상의 화질 향상)

  • Cho, Ki-Ok;Kim, Young jun;Kim, Cheolsu;Cho, Myungjin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1376-1382
    • /
    • 2016
  • In this paper, we present a visual quality enhancement technique for conventional three-dimensional (3D) photon counting integral imaging using background noise removal algorithm. Photon counting imaging can detect a few photons from desired objects and visualize them under severely photon-starved conditions such as low light level environment. However, when a lot of photons are generated from background, it is difficult to detect photons from desired objects. Thus, the visual quality of the reconstructed image may be degraded. Therefore, in this paper, we propose a new photon counting imaging method that removes unnecessary background noise and detects photons from only desired objects. In addition, integral imaging can be used to obtain 3D information and visualize the 3D image by statistical estimations such as maximum likelihood estimation. To prove and evaluate our proposed method, we implement the optical experiment and calculate mean square error.

Compressive Sensing Recovery of Natural Images Using Smooth Residual Error Regularization (평활 잔차 오류 정규화를 통한 자연 영상의 압축센싱 복원)

  • Trinh, Chien Van;Dinh, Khanh Quoc;Nguyen, Viet Anh;Park, Younghyeon;Jeon, Byeungwoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.209-220
    • /
    • 2014
  • Compressive Sensing (CS) is a new signal acquisition paradigm which enables sampling under Nyquist rate for a special kind of signal called sparse signal. There are plenty of CS recovery methods but their performance are still challenging, especially at a low sub-rate. For CS recovery of natural images, regularizations exploiting some prior information can be used in order to enhance CS performance. In this context, this paper addresses improving quality of reconstructed natural images based on Dantzig selector and smooth filters (i.e., Gaussian filter and nonlocal means filter) to generate a new regularization called smooth residual error regularization. Moreover, total variation has been proved for its success in preserving edge objects and boundary of reconstructed images. Therefore, effectiveness of the proposed regularization is verified by experimenting it using augmented Lagrangian total variation minimization. This framework is considered as a new CS recovery seeking smoothness in residual images. Experimental results demonstrate significant improvement of the proposed framework over some other CS recoveries both in subjective and objective qualities. In the best case, our algorithm gains up to 9.14 dB compared with the CS recovery using Bayesian framework.

Development of A Recovery Algorithm for Sparse Signals based on Probabilistic Decoding (확률적 희소 신호 복원 알고리즘 개발)

  • Seong, Jin-Taek
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.5
    • /
    • pp.409-416
    • /
    • 2017
  • In this paper, we consider a framework of compressed sensing over finite fields. One measurement sample is obtained by an inner product of a row of a sensing matrix and a sparse signal vector. A recovery algorithm proposed in this study for sparse signals based probabilistic decoding is used to find a solution of compressed sensing. Until now compressed sensing theory has dealt with real-valued or complex-valued systems, but for the processing of the original real or complex signals, the loss of the information occurs from the discretization. The motivation of this work can be found in efforts to solve inverse problems for discrete signals. The framework proposed in this paper uses a parity-check matrix of low-density parity-check (LDPC) codes developed in coding theory as a sensing matrix. We develop a stochastic algorithm to reconstruct sparse signals over finite field. Unlike LDPC decoding, which is published in existing coding theory, we design an iterative algorithm using probability distribution of sparse signals. Through the proposed recovery algorithm, we achieve better reconstruction performance as the size of finite fields increases. Since the sensing matrix of compressed sensing shows good performance even in the low density matrix such as the parity-check matrix, it is expected to be actively used in applications considering discrete signals.

Online Multi-view Range Image Registration using Geometric and Photometric Feature Tracking (3차원 기하정보 및 특징점 추적을 이용한 다시점 거리영상의 온라인 정합)

  • Baek, Jae-Won;Moon, Jae-Kyoung;Park, Soon-Yong
    • The KIPS Transactions:PartB
    • /
    • v.14B no.7
    • /
    • pp.493-502
    • /
    • 2007
  • An on-line registration technique is presented to register multi-view range images for the 3D reconstruction of real objects. Using a range camera, we first acquire range images and photometric images continuously. In the range images, we divide object and background regions using a predefined threshold value. For the coarse registration of the range images, the centroid of the images are used. After refining the registration of range images using a projection-based technique, we use a modified KLT(Kanade-Lucas-Tomasi) tracker to match photometric features in the object images. Using the modified KLT tracker, we can track image features fast and accurately. If a range image fails to register, we acquire new range images and try to register them continuously until the registration process resumes. After enough range images are registered, they are integrated into a 3D model in offline step. Experimental results and error analysis show that the proposed method can be used to reconstruct 3D model very fast and accurately.