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요  약

압축센싱은 성긴 (sparse) 신호에 대해 Nyquist rate 미만의 샘플링으로도 신호 획득이 가능하다는 것을 수학적으로 증명한 

새로운 개념이다. 그동안 영상분야 압축센싱을 위한 수많은 복원 알고리즘들이 제안되어 왔으나, 낮은 측정률 하에서는 복원 

화질 측면에서 아직 개선할 점이 많다. 일례로, 자연 영상의 압축센싱 복원 화질 향상을 위해, 영상과 관련한 사전 정보들로부

터 정규화 식을 도출하여 복원에 적용해 볼 수 있을 것이다. 따라서, 본 논문에서는 Dantzig selector 및 평활 필터(가우시안 

필터 및 nonlocal 평균 필터)기반의 평활 잔차 오류 정규화 방법을 제안한다. 또한, 복원 영상의 객체 및 배경에서 발생하는 

edge 정보를 우수하게 보전하는 것으로 알려진 Total variation 기반 최소화 알고리즘에 적용하여 복원 영상의 화질을 향상시

키는 방법을 제안한다. 제안하는 구조는 잔차신호의 평활화를 활용한다는 측면에서 새로운 압축센싱 복원 방식이라고 할 수 

있다. 실험 결과, 제안방법은 기존 방법들에 비해 객관적 및 주관적 화질 측면에서 더 높은 성능 향상을 보여주었으며, 특히 

기존 Bayesian 압축센싱 복원 방식과 비교 시 최대 9.14 dB 성능이 향상되었다.

Abstract

Compressive Sensing (CS) is a new signal acquisition paradigm which enables sampling under Nyquist rate for a 

special kind of signal called sparse signal. There are plenty of CS recovery methods but their performance are still 

challenging, especially at a low sub-rate. For CS recovery of natural images, regularizations exploiting some prior 

information can be used in order to enhance CS performance. In this context, this paper addresses improving quality of 

reconstructed natural images based on Dantzig selector and smooth filters (i.e., Gaussian filter and nonlocal means filter) 

to generate a new regularization called smooth residual error regularization. Moreover, total variation has been proved for 

its success in preserving edge objects and boundary of reconstructed images. Therefore, effectiveness of the proposed 

regularization is verified by experimenting it using augmented Lagrangian total variation minimization. This framework is 

considered as a new CS recovery seeking smoothness in residual images. Experimental results demonstrate significant 

improvement of the proposed framework over some other CS recoveries both in subjective and objective qualities. In the 

best case, our algorithm gains up to 9.14 dB compared with the CS recovery using Bayesian framework.
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Ⅰ. INTRODUCTION

Compressive sensing (CS) is an emerging 

framework which can reduce sampling cost for 

sparse or more generally for compressible signals. D. 

L. Donoho theoretically proved that a sparse signal 

which is sensed by a proper sensing matrix (e.g., 
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i.i.d. Gaussian sensing matrix) can be perfectly 

reconstructed[1-3]. Natural images themselves are not 

sparse, but sparse in some transform domain such as 

Discrete Cosine Transform (DCT) or Discrete 

Wavelet Transform (DWT). The measurement vector 

b is sensed from an original image u using a sensing 

matrix A by: 

   (1)

The reduction in number of samples to be sensed 

makes its recovery problem ill-posed. Accordingly, 

the signal u can be exactly recovered only if the 

original signal is sufficiently sparse, for example, 

K-sparse. Here, K refers to the number of maximum 

possible non-zero elements in the signal vector u. 

Often, a signal is K-term approximated before 

compressively sensed, that is, the signal u is 

transformed into a proper transform domain  , and 

only the K largest transformed coefficients are 

retained in the approximated signal[4].

In general, huge efforts have been made on 

developing CS reconstruction method such as, 
[4]
, 


[4], Bayesian Compressive Sensing[6], Smooth 

Projected Landweber (SPL)[7～8], and Total Variation 

(TV)
[9～13]

. However, quality of reconstructed images 

still poses a major challenge to CS. Some key factors 

to affect the overall quality of CS recovery are 

sparsity of signal, sub-rate, mutual incoherence 

between the sparsifying transform and the 

measurement matrix, and the effectiveness of 

reconstructed algorithms, etc.
[1]
 Until now, most 

existing recovery algorithms use the measurement 

error as a regularization term based on the constraint 

   , or using   norm to minimize cost 

∥ ∥ ≤  , for example, with   norm, the 

minimization[4] is as follows:

arg∥ ∥  ∥ ∥ ≤  (2)

The regularization in eq.(2) requires that 

measurements of the reconstructed image should be as 

similar as possible to the received measurement vector. 

By the way, Candes and Tao
[13]

 proposed a new 

regularization-term called the Dantzig selector (i.e., 

∥  ∥∞ ≤   ) which is found to attain 

also good reconstructed images by solving the 

constrained problem:

argmin∥∥ ∥  ∥∞ ≤  (3)

In CS recovery, the reconstructed image desires to 

be close to the original image, so some related prior 

information is preferred to be used [5-12]. The pseudo 

inversed measurement error of  , that is, 

 
 
  , still composes of some 

detailed information of images, so we can make use of 

it to enhance performance of CS recoveries. However, 

this is not practical
[13]

 due to its extremely high cost 

for (pseudo) inversing matrix of  
 

. In [13], a 

substituted version     which can be roughly 

considered as a residual version of a reconstructed 

image which also contains image information. Hereby, 

a smooth filter is used to reduce noise and artifacts. 

As results, image information in     is 

clearer to see. This regularization also works well for 

CS recovery. The modification from the Dantzig 

selector is named as the smoothed residual error 

(SRE) regularization. Obviously, the proposed 

regularization makes measurement of the reconstructed 

image close to the received measurement as well as 

reduces noise in the reconstructed image. The 

effectiveness of our regularization is evaluated by one 

of the CS recovery algorithms. 

TV is popularly used since it makes the 

reconstructed image quality sharper by well preserving 

the edge information and boundary compared with 

other recoveries
[11～12]

. Therefore, in this paper, we will 

use the TV framework to confirm our proposed 

method. More clearly, the proposed regularization is 

added to the TV optimization function, and then the 

augmented Lagrangian method[11～12] is brought in to 

minimize it. Experimental results show superior 

improvements of our proposed method compared with 
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(a)    (b) ⊗   (c)   

그림 1. SRE 정규화 비교 (a) Dantzig selector, (b) 가우시안 필터, (c) NLM 필터

Fig. 1. Comparison of SRE regularization (a) Dantzig selector, (b) Gaussian filter, (c) NLM filter.

the traditional regularization in eq.(2). In a nutshell, 

our contributions are summarized as:

- Based on the Dantzig selector, we propose a new 

regularization term using a smooth filter like Gaussian 

filter[8, 14, 19] or nonlocal means (NLM) filter[18], called 

smooth residual error (SRE) regularization. This 

regularization not only suppresses noise and artifacts 

in reconstructed images, but also makes the 

reconstructed image closer to the original image.

- Motivated by successes of the augmented 

Lagrangian method[17] and TV[10～12] in solving inverse 

problems for CS reconstruction, we introduce a new 

CS recovery called augmented Lagrangian total 

variation using the SRE regularization (TVSRE). For 

general assesment, TVSRE employs two candidates 

including a classical filter (i.e., Gaussian filter) and a 

state-of-the-art filter (i.e., NLM filter).

The rest of this paper has the following structure. 

Section II briefly reviews the Dantzig selector as well 

as presents in detail the proposed SRE regularization. 

Implementation of the proposed SRE regularization to 

TV reconstruction is given in section III. 

Experimental results are discussed in section IV, and 

section V draws some conclusions.

Ⅱ. SMOOTH RESIDUAL ERROR BASED ON 

DANZIG SELECTOR

In this section, we first review the related work in 

[13] which provides a mathematical model of the 

Dantzig selector. After that, the proposed SRE 

regularization is presented in detail for CS recovery 

of natural images.

2. 1. Dantzig selector

In order to make an estimated image   be as close 

to the original u as possible with a very 

overwhelming probability using eq.(4):

∥ ∥ ≤  log  
 

 min (4)

where C is a constant and   denotes the standard 

deviation of i.i.d. Gaussian noise, Candes and Tao 

[13] proposed a new regularization term called the 

Dantzig selector bounded by:

∥  ∥∞ ≤   log (5)

where t is a positive scalar. In fact, eq.(5) 

expresses a regularization term based on the ∞  

norm, but in the discussion section [13], the authors 

also confirmed that eq.(5) is corrected for the   

norm. Moreover, the Dantzig selector can be extended 
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to the   norm by the relationship of  , , and ∞  

norms shown in Lemma 1.2[4] for K-sparse vector X 

(i.e. ∈ ) :



∥∥
≤∥∥ ≤ ∥∥∞ (6)

Using the same proof in [4], it is easy to extend 

eq.(6) to a natural signal image ∈  as follows:



∥∥
≤∥∥ ≤ ∥∥∞ (7)

Exploiting eq.(7), eq.(5) is converted to   norm as:

∥  ∥ ≤    (8)

Thanks to relationship of the   norms, eq. (8) 

expresses the Dantzig regularization via   norm 

which is easy in solving convex optimization . In this 

paper, eq.(8) will be further extended to create the 

SRE term as shown in the following subsection.

2. 2. The proposed SRE regularization

It is obvious that the term    is considered 

as a measurement error that is highly random if the 

sensing matrix is a Gaussian matrix. On the contrary, 

    turns out to be a residual error version 
[13]

 still containing some features of the reconstructed 

image as illustrated in Fig. 1(a). Because 

    is only a roughly estimated version[13], it 

includes lots of noise and artifacts (see Fig. 1 (a)). 

Therefore, by utilizing a proper lowpass filter for 

    which is expected to reduce noise, the 

optimization solution after the filtering is expected to 

be more accurate. As a result, the new regularization 

is modified from the Dantzig selector:

∥  ∥ ≤  (9)

Here, F stands for a filtering operator. Some filters 

as a Gaussian filter or an average filter have its own 

kernel, then eq.(9) is expressed by:

∥⊗  ∥ ≤  (10)

where W stands for a filtering kernel and ⊗  

denotes the convolution operator. 

Actually, incorporating a filter to a regularization is 

difficult to find the convergence rate and error bound 
[20]. Therefore, in this paper, we only experimentally 

indicate improvements of our proposed schemes. 

Additionally, we propose a new CS reconstructed 

scheme based on the augmented Lagrangian TV[11～12] 

to evaluate the effectiveness of the proposed SRE 

regularization with both classical filter and 

state-of-the-art filter.

Ⅲ. TV RECOVERY WITH SRE 

REGULARIZATION (TVSRE)

This section first describes two popular smooth 

filters - NLM filter and Gaussian filter which will be 

used with our algorithm. Subsequently, 

implementation of the SRE regularization to TV 

(hereafter, TVSRE) is presented in detail.

3. 1. Smoothing filter selection for TVSRE

Gaussian filter is a classical filter typically used 

for reducing noise and artifacts[8, 12, 19]. The Gaussian 

filter is widely used due to its simplicity and 

effectiveness for images suffering much from noise. 

Moreover, it is also a local smoothing filter[19]. In 

fact, it is based on the assumption of piecewise 

smoothness
[8, 12, 19]

. In a natural image, this type of 

assumption is quite valid in smooth regions, but not 

quite so in a non-stationary regions near edge 

objects. In comparison to the state-of-the-art filter 

(i.e., NLM filter), the Gaussian filter takes much less 

computational complexity. 

By the way, the NLM filter is deeply investigated 

by Buades et al.[18] and is well-known for its ability 

in preserving edge information of images. Because of 

considering similar patches, the NLM filter can 

preserve texture information of images. However, the 
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main demerit of the NLM filter is its higher 

computational cost than classical filters.

Fig. 1(a) shows much noise and artifacts in the 

Dantzig selector with the cropped image Lena. 

Thanks to smooth filters, Fig. 1(b) & (c) confirm 

reduction of noise and artifacts in the residual image 

compared with the Dantzig selector [13].

3. 2. Implementation of the proposed SRE 

regularization for augmented Lagrangian 

Total variation

In CS framework, the reconstructed images usually 

suffer much from noise and artifacts because they 

are sensed by sub-Nyquist sampling. Therefore, 

application of a smooth filter is necessary[7～8, 10～12]. 

Based on the Dantzig selector, we propose a new 

regularization (SRE) which reduces noise and 

artifacts in residual error images. In this sub-section 

we depict ways to apply SRE to the augmented 

Lagrangian TV with both Gaussian filter and NLM 

filter.

TV reconstruction based on the SRE 

regularization using NLM filter (TVSRE_N):

The smooth residual error regularization is 

integrated to optimization problem as:

argmin∥∥
∥  ∥ ≤  (11)

where ∈  denotes the gradient operator 
composing vertical and horizontal directions, 

respectively. In this paper, we concentrate on a kind of 

Lagrange method called augmented Lagrangian and 

alternated direction algorithms (TVAL3)[11] that is 

popularly used due to its simplicity in solving 

problems as well as low decoding time compared with 

other algorithms. Additionally, the authors in [9] 

shows that TVAL3 also works well with block-based 

recovery. Due to non-differentiability of   norm
[11～12], 

let     according to the splitting technique[9, 11], 

the augmented Lagrangian method[11～12] is employed to 

convert eq.(11) to the unconstrained optimization 

function for an-isotropic TV with     as follows:

argmin







∥∥   
 
∥ ∥

   

 
∥  ∥










(12)

where   and   are positive penalty parameters, 

while Lagrangian multipliers   and   are defined by:

     
    

(13)

It is difficult to directly minimize the cost function 

of eq.(12) with both   and u at the same time. 

Thanks to the splitting technique [9, 11], eq.(12) can 

be treated by alternatively solving two subproblems 

of   and u. As efficient solution for each separate 

sub-problem is achieved, the whole algorithm 

becomes more efficient.

w subproblem: Given u sub-problem, w sub-problem 

is further minimized by the function:

argmin








∥∥   
 
∥ ∥










(14)

eq.(14) is solved with the Shrinkage formula[10] 

with the element-wise product ⊙  as follows:

 max∥ ∥   ⊙∥∥
(15)

u sub-problem: Given the w sub-problem and the 

cost function of u sub-problem is expressed by:

argmin






   

∥ ∥
   

 
∥  ∥










(16)

eq.(16) is a quadratic function. Therefore, its 

minimization can be sought by taking the first 

derivative of the u sub-problem. In the minimization, 

calculation of the inverse matrix usually takes high 

cost. Similar to [11], the u sub-problem will be 
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solved by using steepest descent method:

   (17)

where   denotes the Barzilai-Borwein step
[11～12]

, 

the gradient direction d is estimated by:

  
   
    (18)

Here,      . Evaluation of   

is quite complicated, so eq.(18) is simplified to:

≈
   
    (19)

where   is a scaling factor making eq.(19) close to 

eq.(18). So far, all subproblems are handled and 

alternatively solved until the stopping criterion is 

satisfied. In a nutshell, the complete depiction of TV 

algorithm based on the SRE regularization using a 

Gaussian filter (TVSRE_G) is stated in Table 2. For 

the stopping criterion, we use the ratio:

∥∥
∥   ∥

≤  (20)

The positive value   is set to be close to zeros. 

Moreover, eq.(20) will be used for stopping criterion 

of both the inner loop and the outer loop as shown in 

Tables 1 and 2, but the stopping value of the inner 

loop should be larger than that of the outer loop.

Input: Measurement matrix  , measurement vector  , 
Lagrangian multipliers and penalty parameters.
While Outer stopping criteria unsatisfied do
   While Inner stopping criteria unsatisfied do

    Solve   sub-problem by computing eq.(15)

    Solve   sub-problem by computing eq.(17) via
    calculating gradient direction by eq.(23)
   end

   Update Lagrangian multipliers   and   by eq.(24)
end
Output: The final CS reconstructed image

표 1. NLM필터를 사용한 TVSRE 알고리즘 

(TVSRE_N)

Table 1. TVSRE algorithm using NLM filter.

Input: Measurement matrix  , measurement vector  , 
Lagrangian multipliers and penalty parameters, 
While Outer stopping criteria unsatisfied do
   While Inner stopping criteria unsatisfied do

    Solve   sub-problem by computing eq.(15)

    Solve   sub-problem by computing eq.(17) via
    calculating gradient direction by eq.(18)
   end

   Update Lagrangian multipliers   and   by eq.(13)
end
Output: The final CS reconstructed image

표 2. 가우시안 필터 이용한 TVSRE 알고리즘

(TVSRE_G)

Table 2. TVSRE algorithm using Gaussian filter. 

(TVSRE_G)

TV reconstruction based on the SRE 

regularization using Gaussian filter (TVSRE_G):

The Gaussian filter itself is a linear filer and it is 

incorporated to TV algorithms by the constrained problem:

argmin∥∥
∥⊗  ∥ ≤  (21)

Similar to TVSRE_N, let    , then the 

constrained optimization in eq.(21) is changed to 

unconstrained problem as:

argmin







∥∥   
 
∥ ∥

 ⊗  

 
∥⊗  ∥










(22)

From eq.(22), because the w sub-problem does not 

depend on the filtering operator, so it can be still 

solved by eq.(23). The u sub-problem is solved by 

gradient descend as shown by eq.(17) with gradient 

direction calculated by:

≈
   
⊗   (23)

The u and w subproblems are solved to satisfy the 

inner stopping criteria, the Lagrangian multipliers are 

then updated by:
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   ⊗  
    

(24)

We also apply the stopping criterion as shown by 

eq.(20) for TVSRE_G which is summarized in Table 2.

Ⅳ. EXPERIMENTAL RESULTS 

4. 1. Test Condition

The effectiveness of the proposed algorithm is 

evaluated using nine natural images of size 256x256 

including Barbara, Lena, House, Monarch, Boat, 

Parrot, Peppers, Cameraman, and Leaves as shown in 

Fig. 2. The penalty parameters are empirically 

selected to attain the best quality of reconstructed 

image in terms of PSNR      . The 

standard deviation of Gaussian kernel is set 0.5 and 

its window size is 3x3. The searching window of the 

NLM filter is 13x13 while its neighborhood window 

is 7x7. The NLM filter's decay parameter is equal to 

0.15. Moreover, in our experiments, CS measurements 

are acquired by using a Gaussian random matrix. 

The value of stopping criterion in eq.(20) are set to 

   for the inner loop, and    for the outer loop. 

그림 2. 원본 자연 영상

Fig. 2. Original natural images.

4. 2. Objective Quality Evaluation

Table 3 compares conventional method of TVAL3 
[11], and our two proposed methods, namely, 

TVSRE_G and TVSRE_N. It is worth emphasizing 

that TVAL3[11] is one of state-of-the-art algorithms 

giving quite good recovered images. Obviously, our 

two proposed algorithms outperform TVAL3
[11]

 in 

terms of PSNR. In the best case, TVSRE_G gains 

PSNR of 0.90 dB over TVAL3[11] with image Monarch 

at subrate 0.3, whilst the maximum PSNR gain of 

TVSRE_N is up to 2.49 dB for fine textured image 

Barbara at subrate 0.3 compared with TVAL3 [11]. For 

smooth images like House or Monarch in Table 3, the 

performance of Gaussian filter and NLM filter are 

similar to each other. However, for finer detailed 

image like Barbara or image with details of low 

contrast like Parrot, the NLM filter gains much in 

PSNR over the Gaussian filter (i.e., for image Parrot 

at subrate 0.1, PSNR of TVSRE_N is 27.75dB while it 

is only 26.55dB if using TVSRE_G). 

Table 4 compares two proposed methods with four 

other non-TV algorithms including tree-structured 

CS with variational Bayesian analysis using Discrete 

Cosine Transform (TSDCT)[6], Smooth Projected 

Landweber using Discrete Cosine Transform 

(SPLDCT[7]), Smooth Projected Landweber using 

Discrete Wavelet Transform (SPLDWT[7]), and 

Smooth Projected Landweber using Dual-tree 

Discrete Wavelet Transform (SPLDDWT[7]). Once 

again, the two proposed methods demonstrate 

superiority of performance over other non-TV CS 

recoveries for all tested images and sub-rates. On 

average of six tested images, TVSRE_N gains better 

PSNR than TSDCT
[6]
 by about 4.11 dB. Of course, 

thanks to the effectiveness of the NLM filter, 

TVSRE_N averagely outperforms TSDCT[6] by up to 

4.53dB. TSRE_G and TSRE_N are not only better 

than TSDCT[6], but also show better performance 

than the family of Smoothed Landweber 

algorithms
[11]

 (i.e., SPLDCT, SPLDWT, and 

SPLDDWT). Compared with SPLDCT[7], TVSRE_G 
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Image Subrate
Recovery

TSDCT[6] SPLDCT[7] SPLDWT[7] SPLDDWT[7] TVSRE_G TVSRE_N

Barbara

0.1 19.77 22.71 22.52 22.84 22.55 22.88
0.15 22.78 23.55 23.35 23.64 23.51 24.46
0.2 23.58 24.44 23.96 24.33 24.58 25.84

0.25 24.64 25.09 24.74 25.00 25.46 27.14
0.3 25.45 26.16 25.42 25.67 26.59 28.52

Lena

0.1 17.24 24.35 24.94 25.31 26.35 26.38
0.15 24.71 25.77 26.43 26.87 28.08 28.15
0.2 26.48 26.89 27.62 28.11 29.46 29.71

0.25 27.71 27.83 28.55 28.99 30.65 31.08
0.3 28.76 28.80 29.57 30.08 31.85 32.09

House

0.1 23.86 26.35 26.90 26.95 30.53 30.76
0.15 27.45 28.34 29.01 29.17 32.32 32.53

0.2 29.28 29.77 30.37 30.54 33.70 33.83

표 4. 여러 압축센싱 복원 방법 비교 (PSNR: dB)

Table 4. Comparison of various compressive sensing recovery methods (PSNR: dB).

 

Image Recovery
Sub-rate

0.1 0.15 0.2 0.25 0.3

Barbara
TVAL3[11] 22.51 23.36 24.23 25.01 26.03
TVSRE_G 22.55 23.51 24.58 25.46 26.59
TVSRE_N 22.88 24.46 25.84 27.14 28.52

Lena
TVAL3[11] 26.06 27.56 29.02 30.17 31.34
TVSRE_G 26.35 28.08 29.46 30.65 31.85
TVSRE_N 26.38 28.15 29.71 31.08 32.09

House
TVAL3[11] 29.93 31.91 33.21 34.22 35.19
TVSRE_G 30.53 32.32 33.70 34.77 35.61
TVSRE_N 30.76 32.53 33.83 34.92 35.79

Monarch
TVAL3[11] 23.81 26.39 28.20 30.04 31.62
TVSRE_G 24.58 27.27 29.22 31.17 32.52
TVSRE_N 24.77 27.43 29.53 31.16 32.49

Boat
TVAL3[11] 25.09 26.89 28.48 29.87 31.02
TVSRE_G 25.81 27.63 29.32 30.75 31.89
TVSRE_N 25.49 27.43 29.24 30.63 31.96

Parrot
TVAL3[11] 26.02 28.49 30.40 31.90 33.58
TVSRE_G 26.55 29.05 31.08 32.61 33.82
TVSRE_N 27.75 30.00 31.82 33.40 34.49

Peppers
TVAL3[11] 24.70 27.18 29.18 30.91 32.28
TVSRE_G 25.47 28.01 30.03 31.65 33.03
TVSRE_N 26.08 28.69 30.52 32.00 34.49

Cameraman
TVAL3[11] 24.72 26.53 27.92 29.06 30.06
TVSRE_G 24.84 26.72 28.02 29.31 30.28
TVSRE_N 25.22 27.35 28.56 29.58 30.48

Leaves
TVAL3[11] 18.93 21.15 23.19 24.95 26.80
TVSRE_G 19.86 22.35 24.58 26.51 28.20
TVSRE_N 19.56 22.27 24.66 26.68 28.43

표 3. 여러 Total variation기반 압축센싱 복원 방법 비교 (PSNR: dB)

Table 3. Comparison of various compressive sensing total variation recoveries (PSNR: dB).
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0.25 30.79 30.88 31.47 31.74 34.77 34.92

0.3 31.96 32.03 32.52 32.81 35.61 35.79

Monarch

0.1 19.54 21.13 21.45 21.80 24.58 24.77
0.15 21.83 22.72 23.11 23.68 27.27 27.43
0.2 23.36 24.25 24.72 25.26 29.22 29.53

0.25 24.53 25.36 25.90 26.41 31.17 31.16
0.3 25.62 26.72 27.19 27.80 32.52 32.49

Boat

0.1 22.32 24.02 24.41 24.58 25.81 25.49
0.15 24.80 25.39 25.73 25.99 27.63 27.43
0.2 26.43 26.52 26.79 27.02 29.32 29.24

0.25 27.59 27.70 27.84 28.05 30.75 30.63
0.3 28.97 28.67 28.81 29.02 31.89 31.96

Parrot

0.1 22.39 23.78 23.59 23.67 26.55 27.75
0.15 24.37 24.80 24.41 24.78 29.05 30.00
0.2 25.66 26.25 26.04 26.37 31.08 31.82

0.25 26.55 26.93 26.71 27.23 32.61 33.82
0.3 27.52 28.13 28.34 28.88 33.82 34.49

Peppers

0.1 21.01 23.70 24.45 24.58 25.47 26.08
0.15 23.14 23.81 26.18 26.28 28.01 28.69
0.2 24.57 25.10 27.79 27.84 30.03 30.52

0.25 26.84 27.43 28.73 28.71 31.65 32.00
0.3 28.38 26.61 29.89 29.79 33.03 34.49

Camera

0.1 20.18 21.59 21.77 21.64 24.84 25.22
0.15 21.95 23.05 23.01 23.42 26.72 27.35
0.2 23.02 24.27 24.57 24.79 28.02 28.56

0.25 23.87 25.05 25.78 25.89 29.31 29.58
0.3 24.78 26.01 26.77 27.02 30.28 30.48

Leaves

0.1 16.69 17.94 18.35 18.66 19.86 19.56
0.15 18.98 19.32 19.56 19.98 22.35 22.27
0.2 20.75 20.72 20.99 21.37 24.58 24.66

0.25 22.09 21.66 21.99 22.36 26.51 26.68
0.3 23.40 22.62 22.99 23.30 28.20 28.43

and TVSRE_N are better by up to 5.81 dB and 6.47 dB, 

respectively. Finally, for the best Smoothed Landweber 

method[7] (SPLDDWT),  TVSRE_N gains by up to 6.17 

dB with image Parrot at subrate 0.25. In case of 

TVSRE_G, it gains PSNR better than SPLDDWT[7] by 

up to 5.38 dB.

4. 3. Subjective Quality Evaluation

Visual quality of the recovered images (Boat and 

Barbara) for seven algorithms are compared in Fig. 3 

and Fig. 4, respectively. They verify that the two 

proposed algorithms (i.e., TVSRE_G and TVSRE_N) 

attain good subjective quality. Moreover, a new 

image quality assessment model, Feature SIMilarity 

(FSIM) is further used to evaluate the visual quality 
[15]. The higher FSIM value is, the better the visual 

quality is. TVSRE_N achieves the highest FSIM 

score for all images, which again demonstrates the 

effectiveness of the proposed smooth residual error 

regularization. Because of over-smoothed problem, 

the Gaussian filter does not achieve good subjective 

quality compared with some SPL algorithms[7] such 

as SPLDCT and SPLDDWT. However, TVSRE_G 

still achieves better visual quality than SPLDWT
[7]
 

and TSDCT[7]. Of course, thanks to Gaussian filter, 

noise and artifacts are reduced much in reconstructed 

image Barbara, so TVSRE_G shows a better visual 

quality than TVAL3[11].
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(a) Original Image (b) TSDCT[6]; FSIM=0.9011 (c) SPLDCT[7]; FSIM=0.8936 (d) SPLDWT[7]; FSIM=0.8981

(e) SPLDDWT[7]; FSIM=0.9018 (f) TVAL3[11]; FSIM=0.9295 (g) TVSRE_G; FSIM=0.9383 (h) TVSRE_N; FSIM=0.9328

그림 3. 여러 압축센싱 복원방법에서의 복원 영상(Boat) 화질 비교 (측정율 : 0.3)

Fig. 3 Visual quality comparison of a smooth image (image Boat) at subrate 0.3.

(a) Original Image (b) TSDCT[6]; FSIM=0.8756 (c) SPLDCT[7]; FSIM=0.8837 (d) SPLDWT[7]; FSIM=0.8755

(e) SPLDDWT[7]; FSIM=0.8779 (f) TVAL3[11]; FSIM=0.8645 (g) TVSRE_G; FSIM=0.8775 (h) TVSRE_N; FSIM=0.9026

그림 4. 여러 압축센싱 복원방법에서의 복원 영상 (Barbara) 화질 비교 (측정율 : 0.3)

Fig. 4. Visual quality comparison of fine detail image (image Barbara) at subrate 0.3.

V. CONCLUSION 

In this paper, a new regularization called the 

smooth residual error (SRE) regularization is 

proposed for CS recovery, which employs the Dantzig 

selector and a smooth filter. In per iteration, a 

smooth filter is exploited to reduce noise of the 

regularization   . The proposed 
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regularization takes two advantages at the same time: 

i) it makes the measurements of the reconstructed 

image closer to the received measurement vector b, 

and ii) it reduces noise in the reconstructed image. 

The SRE regularization is manifested effective by a 

proposed augmented Lagrangian algorithm, namely, 

total variation based on SRE regularization using 

Gaussian filter and NLM filter. Experimental results 

showed significant improvement of the proposed 

method both in subjective and objective qualities over 

other existing algorithms.
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