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Abstract

Compressive Sensing (CS) is a new signal acquisition paradigm which enables sampling under Nyquist rate for a
special kind of signal called sparse signal. There are plenty of CS recovery methods but their performance are still
challenging, especially at a low sub-rate. For CS recovery of natural images, regularizations exploiting some prior
information can be used in order to enhance CS performance. In this context, this paper addresses improving quality of
reconstructed natural images based on Dantzig selector and smooth filters (i.e., Gaussian filter and nonlocal means filter)
to generate a new regularization called smooth residual error regularization. Moreover, total variation has been proved for
its success in preserving edge objects and boundary of reconstructed images. Therefore, effectiveness of the proposed
regularization is verified by experimenting it using augmented Lagrangian total variation minimization. This framework is
considered as a new CS recovery seeking smoothness in residual images. Experimental results demonstrate significant
improvement of the proposed framework over some other CS recoveries both in subjective and objective qualities. In the
best case, our algorithm gains up to 9.14 dB compared with the CS recovery using Bayesian framework.
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iid. Gaussian sensing matrix) can be perfectly
reconstructed” . Natural images themselves are not
sparse, but sparse in some transform domain such as
(DCT)

Wavelet Transform (DWT). The measurement vector

Discrete  Cosine Transform or Discrete
b is sensed from an original image u using a sensing

matrix A by:

b= Au (1)

The reduction in number of samples to be sensed
makes its recovery problem ill-posed. Accordingly,
the signal u can be exactly recovered only if the
original signal is sufficiently sparse, for example,
K-sparse. Here, K refers to the number of maximum
possible non-zero elements in the signal vector u
Often,

compressively  sensed,

i1s K-term approximated before
that

transformed into a proper transform domain ¥, and

a signal

is, the signal u is

only the K largest transformed coefficients are
retained in the approximated Signal[4].

In general, huge efforts have been made on
developing CS reconstruction method such as, 60[4],
61[4], Bayesian Compressive Smooth

Projected Landweber (SPL)[%S], and Total Variation

(TV)~ 1 However, quality of reconstructed images

Sensing[ﬁ],

still poses a major challenge to CS. Some key factors
to affect the overall quality of CS recovery are
incoherence
the

of

Until now, most

sparsity of signal, sub-rate, mutual
the  sparsifying

measurement matrix,

transform  and

the
o

between
and effectiveness
reconstructed algorithms, et
existing recovery algorithms use the measurement
error as a regularization term based on the constraint
Au=0b, or using ¢, norm to minimize cost

Il Au—01l ) <

, = €, for example, with ¢, norm, the

o . . . 4] . .
minimization'” is as follows:
argmin, I ull {s.t. | Au—=>bl, < ¢

(2)
The eq.(2) that

measurements of the reconstructed image should be as

regularization  in requires

similar as possible to the received measurement vector.
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By the way, Candes and Tao ™ proposed a new

regularization-term called the Dantzig selector (ie.,
I A7(Au—0) I , < e, ) which is found to attain
also good reconstructed images by solving the

constrained problem:

)

argmin, lull | s.t. | A7 (Au—0) 1l ., < ¢,

In CS recovery, the reconstructed image desires to
be close to the original image, so some related prior
information is preferred to be used [5-12]. The pseudo
inversed measurement error of (Au—0b), that is,
(A474) "4 T(Au—1b), still of

detailed information of images, so we can make use of

composes some
it to enhance performance of CS recoveries. However,

this is not practical[l"ﬂ due to its extremely high cost

.In [13], a

for (pseudo) inversing matrix of (4 74) "

substituted version A 7(Au—b) which can be roughly
considered as a residual version of a reconstructed
image which also contains image information. Hereby,
a smooth filter is used to reduce noise and artifacts.
As results, image information in A T(Au—1b) is
clearer to see. This regularization also works well for
CS recovery. The modification from the Dantzig
selector is named as the smoothed residual error
(SRE) the

regularization makes measurement of the reconstructed

regularization.  Obviously, proposed
image close to the received measurement as well as
The

effectiveness of our regularization is evaluated by one

reduces noise in the reconstructed image.
of the CS recovery algorithms.
TV the

reconstructed image quality sharper by well preserving

is popularly used since it makes

the edge information and boundary compared with

[11~12

other recoveries ! Therefore, in this paper, we will

use the TV framework to confirm our proposed
method. More clearly, the proposed regularization is

added to the TV optimization function, and then the

d[ll ~12]

augmented Lagrangian metho is brought in to

minimize it. Experimental results show superior

improvements of our proposed method compared with
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the traditional regularization in eq.(2). In a nutshell,
our contributions are summarized as:

- Based on the Dantzig selector, we propose a new
regularization term using a smooth filter like Gaussian
filter'™ * ' or nonlocal means (NLM) ﬁlterDS], called
smooth residual error (SRE) regularization. This
regularization not only suppresses noise and artifacts
reconstructed but also makes the
reconstructed image closer to the original image.

in images,

- Motivated by successes of the augmented
Lagrangian method™ and TV in solving inverse
problems for CS reconstruction, we introduce a new
CS recovery called augmented Lagrangian total
variation using the SRE regularization (TVSRE). For
general assesment, TVSRE employs two candidates
including a classical filter (i.e., Gaussian filter) and a
state-of-the-art filter (i.e., NLM filter).

The rest of this paper has the following structure.
Section II briefly reviews the Dantzig selector as well
as presents in detail the proposed SRE regularization.
Implementation of the proposed SRE regularization to
vV II.

Experimental results are discussed in section IV, and

reconstruction is given in  section

section V draws some conclusions.

(1339)

(@ A7(Au—1b) () Wi (4 (Au—1)) © FAT(Au—1))
12 1. SRE ™+tsl H|W (a) Dantzig selector, (b) 7FRAIeH ZE, (¢) NLM ZE
Fig. 1. Comparison of SRE regularization (a) Dantzig selector, (b) Gaussian filter, (c) NLM filter.

II. SMOOTH RESIDUAL ERROR BASED ON
DANZIG SELECTOR

In this section, we first review the related work in
[13] which provides a mathematical model of the
After that, the proposed SRE

regularization is presented in detail for CS recovery

Dantzig selector.
of natural images.

2. 1. Dantzig selector

In order to make an estimated image w be as close

to the original u as possible with a very

overwhelming probabhility using eq.(4):

lo—ul, < 20210g/\/(

where C is a constant and o denotes the standard

N
o’ + Zmin(uf,ar‘)) (4)

i=1

deviation of iid. Gaussian noise, Candes and Tao
[13] proposed a new regularization term called the
Dantzig selector bounded by:

Il A7(Au—b) | . < (1+t Yo /2l0gV (5)

where t is a positive scalar. In fact, eq.(5)

expresses a regularization term based on the /.

norm, but in the discussion section [13], the authors
also confirmed that eq.(5) is corrected for the ¢,

norm. Moreover, the Dantzig selector can be extended
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to the ¢, norm by the relationship of ¢,,¢,, and ¢,
norms shown in Lemma 1.2 for K-sparse vector X
(Ge. XER®) :
X,
VK

Using the same proof in [4], it is easy to extend

< IXl,< VEIXI. 6)

eq.(6) to a natural signal image v € R as follows:

< VNIlul (7)

Exploiting eq.(7), eq.(5) is converted to £, norm as:

IAT(b—Au) I, < (1+t71>0\/ 2NlogN

Thanks to relationship of the ¢, norms, eq. (8)

®)

expresses the Dantzig regularization via ¢, norm
which is easy in solving convex optimization . In this
paper, eq.(8) will be further extended to create the

SRE term as shown in the following subsection.

2. 2. The proposed SRE regularization
It is obvious that the term (Aw—b) is considered
as a measurement error that is highly random if the

sensing matrix is a Gaussian matrix. On the contrary,

AT(Au—b) turns out to be a residual error version
13 ol containing some features of the reconstructed
Fig. 1(a).

AT(Au—1b) is only a roughly estimated version

Because
[13]

image as illustrated in
, it
includes lots of noise and artifacts (see Fig. 1 (a)).
Therefore, by utilizing a proper lowpass filter for
AT(Au—1b) which is expected to reduce noise, the
optimization solution after the filtering is expected to
be more accurate. As a result, the new regularization

1s modified from the Dantzig selector:

I A4 T (Au—b) 1, <€ 9

Here, F stands for a filtering operator. Some filters
as a Gaussian filter or an average filter have its own

kernel, then eq.(9) is expressed by:
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I w47 (Au—1b) I, < ¢ (10)

where W stands for a filtering kernel and &
denotes the convolution operator.

Actually, incorporating a filter to a regularization is
difficult to find the convergence rate and error bound
(201 Therefore, in this paper, we only experimentally
indicate improvements of our proposed schemes.

Additionally, we propose a new CS reconstructed
scheme based on the augmented Lagrangian Ty
to evaluate the effectiveness of the proposed SRE
regularization with  both filter
state-of-the-art filter.

classical and

II. TV RECOVERY WITH SRE
REGULARIZATION (TVSRE)

This section first describes two popular smooth
filters — NLM filter and Gaussian filter which will be
with algorithm.
implementation of the SRE regularization to TV
(hereafter, TVSRE) is presented in detail.

used our Subsequently,

3. 1. Smoothing filter selection for TVSRE

Gaussian filter is a classical filter typically used
for reducing noise and artifacts™ > The Gaussian
filter is widely used due to its simplicity and
effectiveness for images suffering much from noise.

[19]

Moreover, it is also a local smoothing filter ~. In

fact, it is based on the assumption of piecewise

81219 [ 4 natural image, this type of

smoothness
assumption is quite valid in smooth regions, but not
quite so In a non-stationary regions near edge
objects. In comparison to the state-of-the-art filter
(i.e., NLM filter), the Gaussian filter takes much less
computational complexity.

By the way, the NLM filter is deeply investigated
by Buades et al"™ and is well-known for its ability
in preserving edge information of images. Because of
the NLM filter can

preserve texture information of images. However, the

considering similar patches,
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NLM filter

computational cost than classical filters.

main demerit of the is its higher
Fig. 1(a) shows much noise and artifacts in the

Dantzig selector with the cropped image Lena.
Thanks to smooth filters, Fig. 1(b) & (c) confirm
reduction of noise and artifacts in the residual image
compared with the Dantzig selector [13].

3. 2. Implementation of the proposed SRE
regularization for augmented Lagrangian
Total variation

In CS framework, the reconstructed images usually
suffer much from noise and artifacts because they
are sensed by sub-Nyquist sampling. Therefore,
application of a smooth filter is necessary[%& 10-121
Based on the Dantzig selector, we propose a new
(SRE) which

artifacts in residual error images. In this sub-section

regularization reduces noise and

we depict ways to apply SRE to the augmented
Lagrangian TV with both Gaussian filter and NLM
filter.

TV  reconstruction based on the SRE
regularization using NLM filter (TVSRE_N):
The smooth residual error regularization is

integrated to optimization problem as:

argmin, I Du Il

st | FATAu—0) 1, (11)

<€

where DE (D,,D,) denotes the gradient operator
vertical  and

respectively. In this paper, we concentrate on a kind of

composing horizontal  directions,

Lagrange method called augmented Lagrangian and
alternated direction algorithms (TVAL3)™ that is
popularly used due to its simplicity in solving
problems as well as low decoding time compared with
other algorithms. Additionally, in [9]

shows that TVAL3 also works well with block-based
[11-12]

)

19, 11]

the authors

recovery. Due to non-differentiability of ¢, norm

let Du=w according to the splitting technique

d[ll 12] -

the augmented Lagrangian metho 1s employed to

S53 =
a

Loy
(L

(1341)
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convert eq.(11) to the unconstrained optimization

function for an-isotropic TV with p =2 as follows:

I wlly— v (Du—w)
ﬂllDu wll

—)\TF(A (Au—1b))

+%||F(A (Au—10)) I 3

argmin,

(12)

where 3 and p are positive penalty parameters,
while Lagrangian multipliers v and A are defined by:

A=\—puFA(Au—1))

v=v—3(Du—w) (13)

It is difficult to directly minimize the cost function
of eq.(12) with both w and u at the same time.
Thanks to the splitting technique [9, 11], eq.(12) can
be treated by alternatively solving two subproblems
of w and u. As efficient solution for each separate
sub-problem is achieved, the whole algorithm
becomes more efficient.

w subproblem: Given u sub-problem, w sub-problem

is further minimized by the function:
hwll

argmin,,
+

eq.(14) is solved with the Shrinkage formula

with the element-wise product ® as follows:
—v/p)

v (
B H{%”}@ T,

9— I/T(Du —w)

gn Du—wl 2 (14)

[10]

w=max{ | u- (15

u sub-problem: Given the w sub-problem and the

cost function of u sub-problem is expressed by:

argmin,, fyT(Dufw)—Fg I Du—wll
NHA T (Au—1)) (16)
+ o I A (4u=0) 115
eq.(16) is a quadratic function. Therefore, its

minimization can be sought by taking the first
derivative of the u sub—problem. In the minimization,
calculation of the inverse matrix usually takes high

cost. Similar to [11], the u sub-problem will be
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solved by using steepest descent method:
u=u—nd (17)
where 7 denotes the Barzilai-Borwein step[nwm,
the gradient direction d is estimated by:
d= DT(Du—w—I/)— m\}
{+ prF(A T (Au—1)) 18)

Here, x = 6(F{4 "(A4u—1b)))/6u. Evaluation of &

is quite complicated, so eq.(18) is simplified to:

| }

where v is a scaling factor making eq.(19) close to

DT(Du—w—z/)—n)\

+ pye A T(Au—1b)) (19)

eq.(18). So far, all subproblems are handled and
alternatively solved until the stopping criterion is
satisfied. In a nutshell, the complete depiction of TV
algorithm based on the SRE regularization using a
Gaussian filter (TVSRE_G) is stated in Table 2. For
the stopping criterion, we use the ratio:
[RTEET
—_— (20)
Il g |l 9

The positive value ¢ is set to be close to zeros.
Moreover, eq.(20) will be used for stopping criterion
of both the inner loop and the outer loop as shown in
Tables 1 and 2, but the stopping value of the inner
loop should be larger than that of the outer loop.

E 1. NLIMEEE AtEet TVSRE €12|&
(TVSRE_N)

Table 1. TVSRE algorithm using NLM filter.

Input: Measurement matrix A, measurement vector b,

Lagrangian multipliers and penalty parameters.
While Outer stopping criteria unsatisfied do
While Inner stopping criteria unsatisfied do
Solve w sub-problem by computing eq.(15)
Solve w sub-problem by computing eq.(17) via
calculating gradient direction by eq.(23)
end
Update Lagrangian multipliers A and v by eq.(24)
end

Output: The final CS reconstructed image

(1342)
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2. JtAle HE o|2% TVSRE ¢11z|
(TVSRE_G)
TVSRE algorithm using Gaussian filter.

(TVSRE_G)

v
ar

Table 2.

Input: Measurement matrix A, measurement vector b,
Lagrangian multipliers and penalty parameters,
While Outer stopping criteria unsatisfied do
While Inner stopping criteria unsatisfied do
Solve w sub-problem by computing eq.(15)
Solve w sub-problem by computing eq.(17) via
calculating gradient direction by eq.(18)
end
Update Lagrangian multipliers A and v by eq.(13)
end

Output: The final CS reconstructed image

TV based the SRE
regularization using Gaussian filter (TVSRE_G):

reconstruction on
The Gaussian filter itself is a linear filer and it is

incorporated to TV algorithms by the constrained problem:

argmin, I Du Il ,

st | W (4 TAu—1) 1, < ¢ 1)

Similar to TVSRE N, let Du=w, then the
constrained optimization in eq.(21) is changed to

unconstrained problem as:

argmin, (Il wll , — v (Du—w)
+§ | Du—wl?
AT (4 T(Au—1b))

+ % I W (4 (Au—1) I 2

(22)

From eq.(22), because the w sub-problem does not
depend on the filtering operator, so it can be still
solved by eq.(23). The u sub-problem is solved by
gradient descend as shown by eq.(17) with gradient
direction calculated by:

|

The u and w subproblems are solved to satisfy the

DY Du—w—v)— kA

+ puyr W& (A T(Au — b)) 23)

inner stopping criteria, the Lagrangian multipliers are
then updated by:
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We also apply the stopping criterion as shown by
eq.(20) for TVSRE_G which is summarized in Table 2.

IV. EXPERIMENTAL RESULTS

4. 1. Test Condition

The effectiveness of the proposed algorithm 1is
evaluated using nine natural images of size 256x256
Lena, Monarch, Boat,

Parrot, Peppers, Cameraman, and Leaves as shown in

including Barbara, House,
Fig. 2. The penalty parameters are empirically
selected to attain the best quality of reconstructed
image in terms of PSNR (u=512,3=32). The
standard deviation of Gaussian kernel is set 0.5 and
its window size is 3x3. The searching window of the
NLM filter is 13x13 while its neighborhood window
is 7x7. The NLM filter's decay parameter is equal to
0.15. Moreover, in our experiments, CS measurements
are acquired by using a Gaussian random matrix.

The value of stopping criterion in eq.(20) are set to

10~ * for the inner loop, and 10~ ° for the outer loop.

a2 20 AE A G
Fig. 2. Original natural images.
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4. 2. Objective Quality Evaluation

Table 3 compares conventional method of TVAL3
, and
TVSRE_G and TVSRE_N. It is worth emphasizing
that TVAL3"™ is one of state-of-the-art algorithms
giving quite good recovered images. Obviously, our
two proposed algorithms outperform TVAL3Y in
terms of PSNR. In the best case, TVSRE_G gains
PSNR of 0.90 dB over TVAL3™ with image Monarch
at subrate 0.3, whilst the maximum PSNR gain of
TVSRE N is up to 249 dB for fine textured image
Barbara at subrate 0.3 compared with TVAL3 W For

smooth images like House or Monarch in Table 3, the

[11]

our two proposed methods, namely,

performance of Gaussian filter and NLM filter are
similar to each other. However, for finer detailed
image like Barbara or image with details of low
contrast like Parrot, the NLM filter gains much in
PSNR over the Gaussian filter (i.e., for image Parrot
at subrate 0.1, PSNR of TVSRE_N is 27.75dB while it
is only 26.55dB if using TVSRE_Q).

Table 4 compares two proposed methods with four
other non-TV algorithms including tree-structured
CS with variational Bayesian analysis using Discrete
Cosine Transform (TSDCT)"  Smooth Projected
Landweber using Discrete Cosine Transform
(SPLDCT[7]), Smooth Projected Landweber using
Discrete Wavelet Transform (SPLDWT'/),
Smooth  Projected Landweber using Dual-tree
Discrete Wavelet Transform (SPLDDWT'™).

the two proposed methods

and

Once
again, demonstrate
superiority of performance over other non-TV CS
recoveries for all tested images and sub-rates. On
average of six tested images, TVSRE_N gains better
PSNR than TSDCT by about 411 dB. Of course,
thanks to the effectiveness of the NLM filter,
TVSRE_N averagely outperforms TSDCT® by up to
453dB. TSRE_G and TSRE_N are not only better
than TSDCT[G], but also show better performance
than  the of Smoothed Landweber
algorithms™  (ie, SPLDCT, SPLDWT, and
SPLDDWT). Compared with SPLDCT"", TVSRE_G

family



216

ol
gk

ox
=1
tol

]

ot

02
)

10
e
E]

>

F

o>
JiT
o

Chien Van Trinh 2|

¥ 3 0i3 Total variationZ|2F M4 S dHH H|W (PSNR: dB)
Table 3.  Comparison of various compressive sensing total variation recoveries (PSNR: dB).
Image Recovery Sub-rate
0.1 0.15 0.2 0.25 0.3
TVAL3[11] 22.51 23.36 2423 25.01 26.03
Barbara TVSRE G 22.55 23.51 24.58 25.46 26.59
TVSRE N 22.88 24.46 25.84 27.14 28.52
TVAL3[11] 26.06 27.56 29.02 30.17 31.34
Lena TVSRE G 26.35 28.08 29.46 30.65 31.85
TVSRE N 26.38 28.15 29.71 31.08 32.09
TVAL3[11] 29.93 31.91 33.21 34.22 35.19
House TVSRE G 30.53 32.32 33.70 34.77 35.61
TVSRE N 30.76 32.53 33.83 34.92 35.79
TVAL3[11] 23.81 26.39 28.20 30.04 31.62
Monarch TVSRE G 24.58 27.27 29.22 31.17 32.52
TVSRE N 24.71 27.43 29.53 31.16 32.49
TVAL3[11] 25.09 26.89 28.48 29.87 31.02
Boat TVSRE G 25.81 27.63 29.32 30.75 31.89
TVSRE N 25.49 27.43 29.24 30.63 31.96
TVAL3[11] 26.02 28.49 30.40 31.90 33.58
Parrot TVSRE G 26.55 29.05 31.08 32.61 33.82
TVSRE N 27.75 30.00 31.82 33.40 34.49
TVAL3[11] 24.70 27.18 29.18 3091 32.28
Peppers TVSRE G 25.47 28.01 30.03 31.65 33.03
TVSRE N 26.08 28.69 30.52 32.00 34.49
TVAL3[11] 24.72 26.53 27.92 29.06 30.06
Cameraman TVSRE G 24.84 26.72 28.02 29.31 30.28
TVSRE N 25.22 27.35 28.56 29.58 30.48
TVAL3[11] 18.93 21.15 23.19 2495 26.80
Leaves TVSRE G 19.86 22.35 24.58 26.51 28.20
TVSRE N 19.56 2227 24.66 26.68 28.43
E 4 oy gFMA S g d]W (PSNR: dB)
Table 4. Comparison of various compressive sensing recovery methods (PSNR: dB).
Recovery
Image Subrate
TSDCTI6] SPLDCT[7] SPLDWT[7] SPLDDWT[7] TVSRE_G TVSRE N
0.1 19.77 22.71 22.52 22.84 22.55 22.88
0.15 22.78 23.55 23.35 23.64 23.51 24.46
Barbara 0.2 23.58 24.44 23.96 2433 24.58 25.84
0.25 24.64 25.09 24.74 25.00 25.46 27.14
0.3 25.45 26.16 25.42 25.67 26.59 28.52
0.1 17.24 24.35 2494 2531 26.35 26.38
0.15 2471 25.71 26.43 26.87 28.08 28.15
Lena 0.2 26.48 26.89 27.62 28.11 29.46 29.71
0.25 27.71 27.83 28.55 28.99 30.65 31.08
0.3 28.76 28.80 29.57 30.08 31.85 32.09
0.1 23.86 26.35 26.90 26.95 30.53 30.76
0.15 27.45 28.34 29.01 29.17 32.32 32.53
House
0.2 29.28 29.77 30.37 30.54 33.70 33.83

(1344)
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0.25 30.79 30.88 31.47 31.74 34.77 34.92

0.3 31.96 32.03 32.52 32.81 35.61 35.79

0.1 19.54 21.13 2145 21.80 24.58 24.77

0.15 21.83 22.72 23.11 23.68 27127 27.43

Monarch 0.2 23.36 24.25 24.72 25.26 29.22 29.53
0.25 24.53 25.36 25.90 26.41 31.17 31.16

0.3 25.62 26.72 27.19 27.80 32.52 32.49

0.1 2232 24.02 2441 24.58 25.81 25.49

0.15 24.80 25.39 2573 25.99 27.63 2743

Boat 0.2 26.43 26.52 26.79 27.02 29.32 29.24
0.25 27.59 27.70 27.84 28.05 30.75 30.63

0.3 28.97 28.67 28.81 29.02 31.89 31.96

0.1 22.39 23.78 23.59 23.67 26.55 27.75

0.15 24.37 24.80 24.41 24.78 29.05 30.00

Parrot 0.2 25.66 26.25 26.04 26.37 31.08 31.82
0.25 26.55 26.93 26.71 2723 32.61 33.82

0.3 2152 28.13 28.34 28.88 33.82 34.49

0.1 21.01 23.70 24.45 24.58 2547 26.08

0.15 23.14 23.81 26.18 26.28 28.01 28.69

Peppers 0.2 24.57 25.10 27.79 27.84 30.03 30.52
0.25 26.84 2743 28.73 28.71 31.65 32.00

0.3 28.38 26.61 29.89 29.79 33.03 34.49

0.1 20.18 21.59 21.77 21.64 24.84 25.22

0.15 21.95 23.05 23.01 23.42 26.72 27.35

Camera 0.2 23.02 24.27 24.57 24.79 28.02 28.56
0.25 23.87 25.05 25.78 25.89 29.31 29.58

0.3 24.78 26.01 26.77 27.02 30.28 30.48

0.1 16.69 17.94 18.35 18.66 19.86 19.56

0.15 18.98 19.32 19.56 19.98 22.35 2227

Leaves 0.2 20.75 20.72 20.99 2137 24.58 24.66
0.25 22.09 21.66 21.99 22.36 26.51 26.68

0.3 23.40 22.62 22.99 23.30 28.20 28.43

and TVSRE_N are better by up to 5.81 dB and 647 dB,
respectively. Finally, for the best Smoothed Landweber
method” (SPLDDWT), TVSRE_N gains by up to 6.17
dB with image Parrot at subrate 0.25. In case of
TVSRE_G, it gains PSNR better than SPLDDWT" by
up to 5.38 dB.

4. 3. Subjective Quality Evaluation

Visual quality of the recovered images (Boat and
Barbara) for seven algorithms are compared in Fig. 3
and Fig. 4, respectively. They verify that the two
proposed algorithms (G.e, TVSRE_G and TVSRE_N)
attain good subjective quality. Moreover, a new

image quality assessment model, Feature SIMilarity

(FSIM) is further used to evaluate the visual quality
U5 The higher FSIM value is, the better the visual
quality i1s. TVSRE_N achieves the highest FSIM
score for all images, which again demonstrates the
effectiveness of the proposed smooth residual error
regularization. Because of over-smoothed problem,
the Gaussian filter does not achieve good subjective
quality compared with some SPL algon'thmsm such
as SPLDCT and SPLDDWT. However, TVSRE_G
still achieves better visual quality than SPLDWT
and TSDCT". Of course, thanks to Gaussian filter,
noise and artifacts are reduced much in reconstructed
image Barbara, so TVSRE_G shows a better visual
quality than TVAL3""
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(e) SPLDDWTI7]; FSIM=0.9018 (f) TVAL3[11]; FSIM=0.9295 (g) TVSRE_G; FSIM=0.9383 (h) TVSRE_N; FSIM=0.9328

O3 3 oy My SAuHoAMe 52 FAMBoat) A H|W (F™E : 03
Fig. 3 Visual quality comparison of a smooth image (image Boat) at subrate 0.3.

(e) SPLDDWTI7]; FSIM=0.8779 (f) TVAL3[11]; FSIM=0.8645 (@) TVSRE_G; FSIM=0.8775 (h) TVSRE_N; FSIM=0.9026

33 4. oy AFMA SdroAM e = YA (Barbara) 3HE HlW (FME : 09
Fig. 4. Visual quality comparison of fine detail image (image Barbara) at subrate 0.3.

V. CONCLUSION proposed for CS recovery, which employs the Dantzig

selector and a smooth filter. In per iteration, a

In this paper, a new regularization called the smooth filter is exploited to reduce noise of the
smooth residual error (SRE) regularization is regularization AT Au—0). The proposed

(1346)
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regularization takes two advantages at the same time:
1) it makes the measurements of the reconstructed
image closer to the received measurement vector b,
and ii) it reduces noise in the reconstructed image.
The SRE regularization is manifested effective by a
proposed augmented Lagrangian algorithm, namely,
total variation based on SRE regularization using
Gaussian filter and NLM filter. Experimental results

showed significant improvement of the proposed

method both in subjective and objective qualities over

other existing algorithms.
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