리튬이온전지용 음극 활물질로 스피넬 구조의 리튬 티탄산화물$(Li_4Ti_5O_{12})$이 졸겔법과 HEBM법으로 제조되었다. 제조된 $Li_4Ti_5O_{12}$의 입자크기 및 결정구조를 확인하기 위하여 X-선 회절분석(XRD), 주사전자현미경(SEM) 및 평균입자분석(PSA)을 수행한 결과 100nm의 균일한 크기의 입자를 확인하였다. 작업전극으로 $Li_4Ti_5O_{12}$를 사용하고 기준전극과 상대전극으로 lithium 호일을 사용하여 전기화학적인 삼상전극 셀을 구성하여 전기화학적인 특성 평가를 한 결과 $1.0\sim2.5V$의 전압 범위에서 고율 충 방전 성능과 0.2C에서 173mAh/g의 용량 특성을 나타내었다. $Li_4Ti_5O_{12}$은 리튬의 삽입과 탈리가 일어나는 동안 구조적인 안정성을 보여주고 있다.
Li free 음극으로써 구리 foil 집전체에 $Li_{0.5}La_{0.5}TiO_3$ 및 Si 박막을 r.f, 스퍼터링법을 이용하여 증착하고 양극 물질로는 $Li[Co_{0.1}Ni_{0.15}Li_{0.2}Mn_{0.55}]O_2$를 이용하여 전기화학적 특성을 평가하였다. 박막 증착시 플라즈마 내(in-plasma)와 밖(out of plasma)에 구리 foil을 각각 위치시켰다. X-ray 회절 분석의 경우 각각의 조건에서 $Li_{0.5}La_{0.5}TiO_3$ 및 Si 모두 결정 특성의 차이를 발견할 수 없었다. $Li_{0.5}La_{0.5}TiO_3$의 경우 플라즈마 내에서 증착된 경우 그리고 Si 경우는 플라즈마 밖에서 증착된 경우 각각 싸이클 특성이 우수한 것으로 나타났다. 이는 $Li_{0.5}La_{0.5}TiO_3$ 경우 결정성이 존재할 경우 이온전도 특성이 우수하며 Si 경우 플라즈마 내에서 성장된 박막이 더욱 치밀하여 충방전 중 부피변화에 더욱 민감하였기 때문으로 판단된다. 이상의 결과로부터 (1)전지 용량을 갖는 5게 의한 표면 개질의 경우 구조적으로 안정할 수 있는 비정질 상의 Si이 보다 더 바람직하며 (2) 이온전도 특성을 보이는 $Li_{0.5}La_{0.5}TiO_3$와 같은 소재를 이용하여 표면 개질을 할 경우 Li의 확산이 더욱 용이한 구조가 바람직할 것으로 판단된다.
본 연구에서는 PFO (pyrolyzed fuel oil)를 이용해 탄소 전구체(피치)를 얻은 후 KOH와 $K_2CO_3$를 이용한 화학적 활성화를 통해 표면 개질한 카본의 전기화학적 특성을 분석하였다. 탄소 전구체는 3903, 4001, 4002의 세 종류를 사용하였으며, 각 각 PFO를 $390^{\circ}C$ 3 시간, $400^{\circ}C$ 1시간, $400^{\circ}C$ 2 시간 열처리 하여 제조하였다. 또한 화학적 활성화 실험은 활성 촉매의 종류, 교반시간 등을 변화시키면서 비표면적 및 기공크기 등의 물성이 전기화학적 특성에 미치는 효과를 조사 하였다. 제조된 표면개질 PFO 피치의 물리적 특성은 BET, FE-SEM 등을 통해 분석되었으며, 음극 소재로서의 전기 화학적 성능은 충 방전, 순환전압전류, 임피던스, 속도 테스트를 통해 조사되었다. 화학적 활성화법을 이용해 제조한 카본의 평균 기공크기는 22 nm, 비표면적은 $3.12m^2/g$의 결과를 얻었다. 세 가지 개질된 석유계 피치를 음극소재로 사용하여 조사된 전기화학적 특성은 4001 피치가 가장 우수한 것으로 나타났으며, 이 때 표면개질 조건은 KOH를 사용하여 2시간 교반 후 화학적 활성화법에 의하여 열처리 하였다. KOH를 이용한 표면개질 PFO 피치를 사용해 제조한 전지의 초기 용량은 318 mAh/g, 초기효율은 80%로 우수한 결과를 보였으며, 2C/0.1C 속도 테스트 특성은 92%로 높은 특성을 보였다.
출발 물질로서 L $i_2$C $O_3$, NiC $O_3$, CoC $O_3$를 사용하고 조성과 합성 온도를 변화시켜, 고온 고상법에 의하여 LiN $i_{1-y}$$Co_{y}$$O_2$(y=0.1, 0.3, 0.5)를 합성하였다. 합성과 시료들의 결정구조, 미세구조 그리고 전기화학적 특성을 조사하였다. 80$0^{\circ}C$와 8$50^{\circ}C$에서 제조한 L $i_{x}$N $i_{1-y}$$Co_{y}$$O_2$는, 삼방정계(space group: R3m)의 $\alpha$-NaFe $O_2$구조로 결정화되어 있는 층상 구조를 형성하였다. LiN $i_{1-y}$$Co_{y}$$O_2$(y=0.1, 0.3, 0.5)는 Co의 양이 증가함에 따라 a축과 c축의 크기가 감소하였는데, 이는 코발트 이온의 크기가 니켈 이온의 크기보다 작은데 기인하는 것이다. 그러나 c축과 a축의 크기의 비(c/a)가 증가하였음은 이차원적 구조가 잘 발달됨을 보여준다. 니켈에 대한 코발트의 치환량에 따른 리튬 이온의 삽입/추출 가역성은 코발트의 치환량이 증가하면서 증가하여 y=0.3인 LiN $i_{0.9}$$Co_{0.1}$$O_2$에서 대체로 우수하였고 그 이상으로 y값이 증가하면 가역성이 나빠졌다. 80$0^{\circ}C$에서 합성한 LiN $i_{0.9}$$Co_{0.1}$$O_2$가 가장 큰 초기 방전 용량 146 mAh/g을 나타내었으며, 싸이클링 성능도 비교적 우수하였다. 8$50^{\circ}C$에서 합성한 LiN $i_{0.9}$$Co_{0.1}$$O_2$와 LiN $i_{0.7}$$Co_{0.3}$$O_2$가 우수한 싸이클링 성능을 보였다.다. 싸이클링 성능을 보였다.다.보였다.다.
현재까지 총 29건의 전기저장장치의 화재가 발생되었는데, 이 중 22건이 신재생에너지 연계용이며, 완전충전 이후, 운전대기 상태인 휴지기간 동안에 계절과 무관하게 화재사고가 발생되었다. 이것은 병렬로 연결된 셀들의 SOC 상태가 서로 다른 경우, 의도하지 않게 SOC가 높은 셀에서 낮은 셀로 전류가 이동하는 셀프에너지 밸런싱 현상으로, 일부 셀이 과충전되어 열폭주로 인한 화재의 원인으로 평가되고 있다. 따라서, 본 논문에서는 전기저장장치의 셀프에너지 밸런싱을 방지하는 새로운 BMS의 회로구성과 운용 알고리즘 그리고 SOC 평가알고리즘을 제안한다. 제안한 알고리즘과 구현한 BMS를 바탕으로 리튬이온전지의 열화 특성과 열화 및 정상 셀 간의 셀프에너지 밸런싱 특성을 분석한 결과, 정상 셀 대비 열화 셀의 방전 용량 비율은 91.75[%]이며, 열화율이 8.25[%]임을 알 수 있었고, SOC가 높은 정상 셀에서 SOC 낮은 열화 셀로 전류가 이동하는 셀프에너지 밸런싱 현상이 발생함을 확인하였다. 또한, 셀프에너지 밸런싱 전류가 과도하게 높아지는 경우, BMS가 확실하게 셀들의 병렬연결을 분리하여, 리튬이온전지의 안전성을 향상시킬 수 있어, 본 논문에서 제안한 BMS의 유용성을 확인하였다.
리튬금속을 사용하는 리튬이차전지는 사용이 간편하고 측정전극의 고유특성을 분석할 수 있는 장점이 있는 반면에 방전후 충전 시 리튬금속 전극에 리튬금속 수지상이 생성되고 심지어는 성장된 수지상에 의해 내부단락을 초래한다. 이러한 단락현상은 분리막의 두께와 밀접한 관계가 있다. 수지상에 의한 내부단락을 방지하기 위하여 두께가 각각 다른 4종류의 분리막을 사용하여 전기화학적 특성을 분석하였다. 다공성 유리섬유 부직포(glass microfiber filter) 분리막은 두께가 $300{\mu}m$ 로써 내부단락을 효과적으로 방지 할 수 있으며 AC 임피던스 값도 낮아서 유망한 분리막으로 확인하였다. 분리막의 두께가 $50{\mu}m$ 이상인 경우 내부단락 현상이 일어나지 않았으며, 0.2 C율의 싸이클 특성도 양호하였다. Signature 율 특성은 다공성 유리섬유 부직포를 사용한 경우 5 C의 고율에서 용량 유지율은 0.1 C에 비교하여 99%의 우수한 특성을 나타내는 것을 확인하였다.
활성탄에 $TiO_2$를 졸-겔 방법으로 코팅하여 탄소복합전극을 제조하였고 축전식 이온제거(Capacitive deionization : CDI) 과정에서 나타난 제염효과에 대하여 고찰하였다. 본 연구에서 $TiO_2$는 전극의 젖음성을 향상시켜 전극과 전해질의 접촉 저항을 감소시키고, 전기이중층 흡착량을 증가시킬 수 있으므로 CDI전극재로 활성탄에 코팅하였다. TEM, XRD, XPS로 활성탄에 $TiO_2$가 코팅되었는지 확인하였다. 순환전류전압법과 impedance측정 결과 탄소복합전극이 탄소전극보다 전기이중층 용량이 증가하였으며, 전극의 확산저항이 줄어든 것을 확인하였다. 또한 이온제거율을 확인하기 위한 충전-방전 및 이온전도도 평가 결과 전해질 NaCl $1000\;{\mu}S/cm$에서 탄소복합전극이 탄소전극보다 39% 더 많은 이온을 제거하는 것을 확인하였다. 본 연구 결과 CDI용 전극재료 $TiO_2$가 코팅된 탄소복합전극이 탄소전극보다 효과적인 제염효과를 보임을 확인하였다.
흑연 소재는 높은 구조적 안정성 및 낮은 가격으로 리튬 이차전지 음극소재로 이용되고 있다. 또한, 탄소 소재의 낮은 속도 특성을 개선하려는 탄소 코팅 연구가 활발히 진행되고 있다. 탄소 코팅은 화학적 반응을 이용하는 CVD 코팅, 용매를 사용하는 습식 코팅, 기계적 충돌에 의한 건식 코팅으로 나뉜다. 본 논문에서는 습식 코팅 공정에서 사용 용매에 따라 탄소 전구체(피치)의 일부만 사용될 수 있는 문제와 용매 제거에 의한 환경 문제를 해결하고자 건식 공정인 고속 분쇄/코팅 공정을 이용하여 리튬 이차전지 음극용 탄소 소재를 제조하였다. 침상 코크스와 피치의 무게비는 8 : 2 wt.%으로 하고, 고속 분쇄/코팅 공정을 이용하여 침상 코크스의 분쇄와 피치의 코팅을 통한 구상화를 진행하였을 때, 침상 코크스의 모서리 면이 피치로 코팅되는 것을 확인하였다. 이 소재를 2400 ℃ 고온 열처리를 진행한 결과 피치 코팅되지 않은 소재와 비교하여 초기용량과 효율은 큰 차이를 보이지 않았으나, 10C/0.1C 속도 특성에서 41.8%의 성능이 향상되었다. 고속 분쇄/코팅 공정을 통해 제조된 소재는 고속 방전용 리튬 이차전지 음극 소재에 사용될 수 있을 것으로 생각된다.
고전압 용 양극산화물 $LiNi_{0.5}Mn_{1.5}O_4$는 고온에서 합성 시, 입자 내에 산소결함에 의한 불순물상을 만들게 된다. 불순물상은 불완전한 스피넬 구조를 형성하며 리튬이온의 삽입$\cdot$탈리를 방해하여 전극의 성능을 감소시킨다. 본 연구에서는 고온 열처리 시 생성되는 이러한 불순물상의 거동을 파악하기 위해 크롬을 치환한 $LiNi_{0.5-x}Mn_{1.5}Cr_xO_4(0{\leq}x{\leq}0.05)$를 졸$\cdot$겔법을 이용하여 합성하여 고온 열분석을 실시하였다. 열분석 결과 크롬이 치환되지 않은 양극활물질은 산소결함에 의한 $2\%$의 무게 감소를 보였으나, 크롬이 치환된 경우 무게 감소분이 줄어들어 불순물 생성이 억제됨을 알 수 있었다. XRD 분석에서도 크롬이 치환된 경우 불순물 상이 억제됨을 나타내었으며 불순물상의 감소로 인해 크롬을 첨가한 양극활물질 $LiNi_{0.5-x}Mn_{1.5}Cr_xO_4$를 사용한 경우 충·방전 실험 시 가역 용량과 싸이클 안정성이 향상됨을 볼 수 있었다.
본 연구에서는 탄소 나노재료 중 환원된 그래핀 옥사이드와 전도성 고분자중 폴리아닐린을 복합화 하여 슈퍼커패시터용 전극을 제조하였으며, 각각의 전극 재료가 가지는 단점을 서로 보완하고 장점을 극대화시킴으로써 전극의 전기화학적 특성을 크게 향상 시킬 수 있었다. 전극 물질에 사용된 폴리아닐린은 아닐린 단량체를 화학 중합법으로 제조하였고, 환원된 그래핀 옥사이드는 별도의 전 처리 과정 없이 사용하였으며, DMF(N,N-dimethyl formamide)를 용매로 도입하여 분산용액을 제조하였다. 분산용액은 금이 코팅된PET(Polyethylene terephthalate) 기판위에 산업적 스케일로 적용이 가능한 스프레이 코팅 방법을 이용하여 전극으로 제조하였다. 환원된 그래핀 옥사이드/폴리아닐린 복합재료를 기반으로 제조된 전극의 전기화학적 특성을 비교하기 위하여 환원된 그래핀 옥사이드와 폴리아닐린 단일 전극을 제조하였으며, 동일한 조건하에서 순환전압전류법, 임피던스 분광법, 정전류 충 방전법을 통하여 각각의 전극이 나타내는 전기화학적 특성을 비교 분석 하였다. 그 결과로, 환원된 그래핀 옥사이드/폴리아닐린 복합재료를 기반으로 제조된 전극은 폴리아닐린, 환원된 그래핀 옥사 단일 전극에 비하여 전기 용량 값이 높게 나타났으며, 전해질 계면과의 내부 저항은 폴리아닐린, 환원된 그래핀 옥사이드 단일 전극에 비하여 각각 24 %, 58 % 감소하는 결과를 나타내었다. 이러한 결과로 미루어보아 본 연구를 통하여 제조된 환원된 그래핀 옥사이드/폴리아닐린 복합재료 기반의 전극은 유연성 에너지 저장 매체나 웨어러블 전자기기에 적용이 가능할 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.