• Title/Summary/Keyword: 방오성능

Search Result 31, Processing Time 0.078 seconds

Anti-fouling Property of Hydrophobic Surfaces in Sea Water (소수성 표면의 해수 방오성능)

  • Cho, S.H.;Ryu, S.N.;Hwang, W.B.;Yoon, B.S.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.2
    • /
    • pp.82-87
    • /
    • 2013
  • Effects of material surface property, hydrophobic or hydrophilic, on the bio-fouling occurred on the bodies submerged in the sea water are investigated experimentally. 4 test models are used in the experiment, which includes aluminum foil in common use, AAO applied hydrophobic surface, HDFS coated hydrophobic surface and hydrophilic surface. Hydrophobic surfaces with numerous micro & nano-scale pillars on it seems to play very important role of preventing them from fouling in initial stage while the effects disappear in long term sense of fouling process. It is concluded that the surface hydrophobicity retards the initial fouling until the fouling thickness is smaller than the heights of the pillars on it but the effects diminish with the fouling proceeds so that the thickness grows bigger than the pillar heights.

Full Scale Frictional Resistance Reduction Effect of a Low Frictional Marine Anti-fouling Paint based on a Similarity Scaling Method (상사축척법에 기반한 저마찰 선박 방오도료의 실선 마찰저항 저감성능 추정)

  • Yang, Jeong Woo;Park, Hyun;Lee, Inwon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.1
    • /
    • pp.71-81
    • /
    • 2017
  • In this study, a series of full-scale extrapolation procedures based on the Granville's similarity scaling method, which was employed by Schultz (2007), is modified and then applied to compare the resistance performance between two different anti-fouling coatings. As an analysis example, the low frictional AF coating based on a novel skin-friction reducing polymer named FDR-SPC (Frictional Drag Reduction Self-Polishing Copolymer), which had been invented by the present author, is employed. The low frictional coating, which gives 25.4% skin frictional reduction in lab test, is estimated to give 18.2% total resistance reduction for a 176k DWT bulk carrier.

A Study on the Physical Properties of Silicone Type Marine growth Antifouling Coatings (실리콘계 해양생물 부착 방지 도료의 도막 물성 고찰)

  • Kim, Seong-Kil;Choi, Dae-Won;Han, Won-Heui;Kwon, Hyuk-Dong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.06a
    • /
    • pp.134-135
    • /
    • 2013
  • In this study, the physical properties and antifouling were investigated to make the Marine growth antifouling coatings by blending of synthesized silicone resin and pigment with a low surface tension. To examine the film properties and foul release of the prepared coatings, film specimens were prepared with the prepared coatings and anti corrosion coatings. The test results showed that the silicone type antifouling coatings had very excellent antifouling properties rather than any other coatings because of the coating films had followed the low surface tension and elasticity, and prevention of adhesion for marine growth and mechanical adhesions.

  • PDF

Development of a Novel Treatment System for TBT Paint Waste from Ship (TBT 방오폐인트 폐기물의 최적 처리시스템 연구)

  • 박상호;김인수;송영채;우정희;김동근
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.206-211
    • /
    • 2003
  • Bans on TBT based antifouling paints have been drafted since 1998 by meeting 42, 43, 45 and 46 for the MEPC(Marine Environmental Protection Committee) of the International Marine Organization, and decided finally at a Diplomatic Conference of the IMO in October 2001. It was a key issue that there should be a global prohibition on the presence of organo-tin compounds in ships by 1 Jan. 2008. TBT Paint Waste from ship happens by vast quantity since 2003. This paper suggests a method to design Treatment System for TBT Paint Waste from Ship. The result of measurement in pyrolysis system were removal rate on 99%. at hight temperature in 1000$^{\circ}C$ and reaction time 1hr. TBT removal was more that 99%.

  • PDF

Pyrolysis Treatment for TBT Paint Waste from Ship (선박용 TBT 방오페인트 폐기물의 열분해 처리)

  • Park, Sang-Ho;Kim, In-Soo;Song, Young-Chae;Woo, Jung-Hui;Kim, Dong-Geun
    • Journal of Navigation and Port Research
    • /
    • v.27 no.4
    • /
    • pp.449-454
    • /
    • 2003
  • Bans on TBT based antifouling paints have been drafted since 1998 by meetings 42, 43, 45 and 46 for the MEPC(Marine Environmental Protection Committee) of the international Maritime Organization, and decided finally at a Diplomatic Conference of the IMO in October 2001. It was a key issue that there should be a global prohibition on the presence of organo-tin compounds in ships by 1 Jan. 2008. TBT Paint Wastes from ship have been produced by vast quantity since 2003. This paper suggests a method to design Treatment System for TBT Paint Waste from Ship. The organotion compound was dissolved by heating, and the organic matters was oxidized and turned into inorganotins, then they were stabilized in the end. At 500^{\circ}C$, the organotin compound which heated for one hour was removed by 58%, and in 1000^{\circ}C$ the organotin compound was treated by 99.9% after and hour of heating treatment.

Detergency Performance Evaluation of Organic Adherent Pollutant by Modified Silicate-Based Antifouling Coating Material (변성 실리케이트계 방오성 코팅재의 유기성 피착 오염물질 세정성능 평가)

  • Chae, Woo-Byung;Seong, Dong-Yun;Kim, Cheun-Soo;Seo, Sang-Kyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.275-278
    • /
    • 2012
  • This study try to finding the self-detergency performance of adherent pollutant on the mortar surface by using the developed silicate based antifouling coating material. Developed coating material coated on the surface of mortar test piece and after 30 minutes, over layed already coated mortar surface. After 7 days, the surface is polluted with crayons and oily magic marker. After 24 hours, contaminated area was wiped out the water. From the result of self-detergency performance test, it is concluded the developed material could be used as a detergent the contaminated concrete surface.

  • PDF

국내 선박부착생물 관리방안에 관한 연구

  • Ha, Sin-Yeong;Park, Han-Seon;Lee, Gyeong-Mi
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.05a
    • /
    • pp.236-237
    • /
    • 2019
  • IMO는 MEPC 73차(2018.10) 회의에서 선박부착생물 관리절차, 방오성능, 수중소제, 선체설계 및 교육사항이 구체적으로 명시될 수 있도록 기존 지침의 유효성평가가 승인되었으며 수집된 정보를 바탕으로 관리지침서 개정을 검토하고 있어 향후 선박부착생물 관리 가이드라인도 규제화 될 가능성이 높다. 우리나라는 IMO 선체 부착생물규제 대응하기 위해 외래 유해침임종 관리를 위한 최적을 방안을 도출 할 필요가 있다.

  • PDF

Dyeing and Finishing on Interior Textile of Shipping (선박 인테리어용 섬유제품 적용 난연/내광 복합기능성 가공 연구)

  • Kim, Mi-Kyung;Jung, Dae-Ho;Kim, Young-Kuk;Ahn, Seung-Kuk
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.103-103
    • /
    • 2012
  • 크루즈 페리 선박의 인테리어 섬유 내장부품은 고도의 난연성과 내구성, 그리고 높은 수준의 감성과 심미적 기능을 만족하는 고기능성 소재로 구성된 섬유 복합체이다. 이는 화재, 전복 등 돌발 사고에 대하여 탑승자를 보호하고, 쾌적한 실내 분위기를 제공함으로서 안전운행을 유도하며, 높은 수준의 감성과 심미적 기능을 부여함으로서 품위와 가치를 증가시키는 기능이 있다. 난연기능이 부가된 난연사의 경우 복합가공 즉, 방오, 항균, 소취 기능을 추가 부여하게 되면 난연 기능이 급격히 저하되는 결정적인 단점이 있다. 이로 인해 가혹한 난연 성능이 요구되는 선박용 인테리어 섬유제품의 경우 그 규격을 만족하기란 쉽지 않기 때문에 원사제조에서부터 염색공정, 가공공정에 걸쳐 각 단위 공정별로 복합적으로 난연, 방오, 항균소취 기능들의 추가 보완이 필요한 실정이다. 또한 최근 사용자 입장에서는 용도에 따라 여러 가지 기능이 복합된 원단을 요구하는 사례가 많아지고 있는 실정이며, 많은 후가공 공정시 난연가공과 더불어 복합적으로 추가 가공시 난연성 저하 등의 문제가 있다. 본 연구에서는 선박용 인테리어 섬유제품의 Spec.을 만족시키기 위해 난연 직물의 염색 후가공에 적용되는 염조제 성능을 조사하고 고견뢰 및 균염을 만족하는 난연 내광 등의 복합기능성을 확보하기 위한 기초기술을 검토하였다.

  • PDF

Property of Concrete Surface layer Using Self-Cleaning Silicate Concrete Impregnant (Self-Cleaning 실리케이트계 표면보호제를 적용한 콘크리트 표층부의 특성)

  • Song, Hun;Lee, Jong-Kyu;Chu, Yong-Sik
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.3
    • /
    • pp.233-239
    • /
    • 2013
  • This study is interested in manufacturing the self-cleaning silicate concrete surface impregnant including tetra ethyl ortho silicate, lithium silicate for the repair of the exposed concrete surface and the color concrete requiring the advanced function in view of the concrete appearance. The concrete surface layer change and static contact angel was tested for the review of application. The result of this study shows that the effective silicate is tetra ethyl ortho silicate and lithium silicate. The adhesion in tension is satisfied with performance requirement of KS standard but the reinforcement of concrete substrate is slight. So, The self-cleaning silicate concrete impregnant of this study is more desirable for the improvement of durability rather than the reinforcement.

An Analysis of Hydrophobic Characteristics of Concrete Surfaces by Antifouling Coating Agent using Cellulose Nonofiber and Alkyl Ketene Dimer (셀룰로오스 나노 섬유와 AKD를 활용한 방오 코팅제에 의한 콘크리트 표면의 소수 특성 분석)

  • Nag-Seop Jang;Chi-Hoon Noh;Hongseob Oh
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.2
    • /
    • pp.120-129
    • /
    • 2023
  • Marine structures are subject to damage not only from sea salt but also from the adhesion of marine microorganisms and suspended particles, which cause additional damages. In order to prevent this, periodic coating is employed in the case of vessels to maintain the necessary performance. However, it is true that periodic coating is difficult for concrete or steel support structures, and there is a risk of marine environmental pollution. In this study, authors developed an anti-fouling coating agent using eco-friendly materials that possess hydrophilic cellulose nanofibers and AKD(alkyl ketene dimer). To achieve a homogeneous mixture, the content of cellulose nanofibers was fixed at 1 %, and AKD, distilled water, and waste glass were mixed using a digital mixer and homogenizer. The contact angle of the prepared coated surface was observed to be over 130°, indicating sufficient performance even in a water droplet flow test with a 15° slope, suggesting self-cleaning capability. Furthermore, through the analysis of viscosity characteristics at different temperatures, it was confirmed that the application is feasible at room temperature. Microstructure analysis also verified that the coating agent is uniformly applied to the concrete surface.