• Title/Summary/Keyword: 방수층

Search Result 95, Processing Time 0.025 seconds

Analysis of Water Penetration through Pores in Spray-applied Waterproofing Membrane Using X-ray CT Images (X-ray CT를 이용한 분무식 방수 멤브레인의 공극 내 물 침투 분석)

  • Choi, Soon-Wook;Kang, Tae-Ho;Chang, Soo-Ho;Lee, Chulho;Choi, Myung-Sik;Kim, Kwang Yeom
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.211-219
    • /
    • 2017
  • The spray-applied waterproofing membrane is installed on shotcrete or concrete surface to make impermeable layer with 3-5 mm thick for the purpose of waterproofing. This study aims to determine the internal structure of a spray-applied waterproofing membrane including pores by using X-ray CT technique. Before obtaining X-ray images of the membrane specimens, a waterproof performance test was performed on the membrane specimens with a water pressure of 500 kPa for 28 days. Results show that the movement of moisture is made through micropores. This is based on the fact that the large pores inside the membrane are not saturated and the degrees of saturation of the micropores are high. X-ray image is effective for determining the pore size distribution and whether the membrane with pores contains the water However, it is necessary to pay attention to the determination of water content, since water content may vary depending on the threshold value of X-ray image analysis applied to calculate the water content.

A Study on Method of Evaluation for Deck Pavement (교면포장의 평가 방법 고찰)

  • Jo, Shin Haeng;Jo, Nam June;Jang, Jung Soon;Baek, Yu Jin;Kim, Nak Seok
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.86-86
    • /
    • 2011
  • 토목 기술의 발달로 장대교량이 증가함에 따라 교면 포장도 더 심각한 진동 및 충격, 기상조건에 노출되게 된다. 교면 포장은 차량의 주행의 편리성뿐 아니라 교량 구조물을 보호해야 하는 역할도 함께 수행하기 때문에 일반 토공부의 포장과 다른 성능을 필요로 한다. 교면 포장의 특수함을 감안하여 교면 포장의 품질을 평가하고, 설계와 적용시 반영 한다면 교량의 내구 연한 및 시공, 유지관리 비용을 절감 할 수 있을 것이다. 본 논문에서는 교면 포장에 요구되는 성능을 조사하고, 교면 포장 특히, 장대 교량 적용시 교면 포장의 성능 평가를 위한 평가 방법을 고찰하였다. 교면 포장의 가장 큰 구조적 특징은 교량의 진동과 휨에 의해 포장이 받게 되는 휨응력이다. 특히 교량의 장경간화에 따라 더 큰 진동과 변형을 경험하게 되는 교면 포장은 그에 따른 충분한 휨 추종성과 피로 저항성을 확보하여야 한다. 기존 토공부 포장에서는 실험이 간단한 원통형 공시체를 이용한 간접인장강도 모드의 실험으로 피로 성능을 평가하였으나, 교면 포장은 실제 거동 특성과 유사한 빔 피로 시험 모드가 보다 신뢰성이 높을 것으로 판단된다. 빔 피로시험 모드로는 3점, 4점, 5점 휨 피로 시험 모드가 있으며, 각각의 모드는 지지점의 개수, 재하점의 개수에 따라 다른 거동 특성을 평가 할 수 있다. 최근 개발된 5점 휨 시험의 경우 교량에서 발생하는 부(-)모멘트를 모사할 수 있어 보다 현실적인 검증이 가능할 것으로 예상된다. 이 외에도 실제 크기 모형을 이용하여 윤하중을 가하는 Full-scale 모델의 경우 비용과 시간이 많이 소요되는 단점이 있으나 가장 신뢰성이 높은 방법이라고 할 수 있다. 교면 포장은 교량구조부로 수분이 침투되는 것을 막아주는 역할을 하여야 하며, 특히 해상 교량의 경우의 염분과 겨울철 사용되는 제빙화학제는 콘크리트의 열화와 강구조물의 부식을 발생시키므로 교면 포장의 방수 성능 검토는 매우 중요한 역할을 한다. 일반 토공부 포장과 달리 교면 포장은 하부층이 대기에 노출되어 있기 때문에 겨울철에 더 낮은 온도로 포장체의 온도가 내려가게 되고, 온도가 떨어진 포장층은 스티프니스가 증감함에 따라 저온 균열의 발생확율이 높아지며, 휨추종성도 나빠질 가능성이 높다. 따라서 저온에서의 균열 저항성 및 스티프니스를 평가하는 것은 교면 포장 재료의 중요한 인자 중 하나이다. 포장과 포장 하부층의 접착은 포장층의 일체화된 거동을 할 수 있게 하기 때문에 내구성 향상에 중요하다. 특히 교량과 같이 진동과 변형이 많은 경우에 있어 포장 접착층의 성능은 포장과 교량 구조물의 파손에 더 큰 영향을 미치게 된다. 접착성능은 실내에서의 직접인장모드와 전단접착강도 시험 모드의 실험이 있으며, 현장에서 측정하는 Pull-off 실험 등이 있다. 최근에 교통량과 중차량의 증가와 더불어 교량이 장경간화 되어 가면서 평가방법과 기준을 과거보다 엄격하게 할 필요성이 있다. 하지만 현실은 교면포장에 대한 시방규정이 모호하기 때문에 본 논문에서 제시한 국내외의 다양한 평가방법을 통해 적절한 교면포장의 성능을 평가하고 교면포장의 거동특성에 대한 이해를 함으로써 보다 발전된 교량기술을 확보할 수 있을 것이다.

  • PDF

A Study on Technology of Waterproofing of the Concrete Structure Which Used Soft FRP Resin and Square Groove Cutting Technique (연질 FRP 수지와 정방형 홈 컷팅 기술을 이용한 콘크리트 구조물의 방수기술에 관한 연구)

  • Lee, Hyung-Jun;Choi, Sung-Min;Kim, Sung-Sik;Ahn, Sang-Ku;Cho, Ah-Hyung;Oh, Sang-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.597-600
    • /
    • 2008
  • In this study the reason which researches the feature of the exposure type waterproofing it uses the technique of the soft FRP it uses the soft unsaturated polyester and the square groove cutting technique with respects and solves the interface separate problem because of the rigid FRP it is used with the repairs and retrofit materials it is caused by in adhesion of concrete insufficiency. The feature of this technique was the dispersion and the reinforcement of the fatigue stress due to the integration behavior and the reinforcement due to the glass-fibre of the concrete due to the soft FRP resin and, it investigated the crack appearance confrontation of concrete and the cohesion stability of the concrete due to the square groove cutting technique with importance. The result of research when it applies the soft FRP with the exposure type waterproofing, is judged with the fact that it will be able to expect a bulge resistance confrontation and creak confrontation ability and cohesion stability improvement.

  • PDF

An Experimental Study on the Underground Structure Apply Properties to Salt Water Environment of Pre-hydrated Bentonite Waterproofing. (사전수화 벤토나이트 방수재의 염수환경 지하구조물 적용 특성에 관한 실험적 연구)

  • Lee, Jung-Hoon;Choi, Sung-Min;Choi, Sung-Min;Oh, Sang Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.833-836
    • /
    • 2008
  • In this study, we would like to study on the apply properties to salt water environment of pre-hydrated bentonite for complement problem that water leakage to permit salt water that existing bentonite does not initial swelling. Accordingly, execute viscosity properties, swelling properties, permeability and confirmed apply properties to salt water environment. Did not permit initial permeable in test result salt water environment, and permeable did not happen until 72 hours by maximum $3kgf/cm^2$ water pressure. Fresh water environment enough progress of gelation confirm that viscosity and swelling properties confirmation result and as delamination phenomenon of platy formation looked in salt water environment but this as bentonite hydrates crystallization layer swelling that is done consider. Synthetic study results, if compaction condition such as press layer is formed to bentonite upper, applied to the salt water environment of the underground structures of expectations.

  • PDF

An Experimental Study of Water Vapor Pressure that occurs at the Interface of a Fluid-Applied Membrane and Concrete (콘크리트와 도막 방수층 계면에 발생되는 수증기압에 관한 실험적 연구)

  • Ko, Jin-Soo;Kim, Mun-Hee;Lee, Sung-Bok;Shin, Yun-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.147-150
    • /
    • 2006
  • Of the total defects that have occurred recently in the Korean construction market, over 30% are caused by the construction of defective waterproofing, and the phenomenon of air pockets in the waterproofing layer, which is caused by the concrete vapor pressure, is known to be the primary cause of defective waterproofing. Accordingly, in this study the theory about the relationship between water pressure and temperature as well as the damp-proofing volume of concrete and, then, the change of vapor pressure volume was measured and analyzed by making a test sample after spraying a dampness remover and a waterproofing material to a prepared test body. As a result of measuring the water vapor pressure for the surface temperature of the waterproofing layer with the fluid-applied membrane temperature based on about $10^{\circ}C$, which is the average temperature of Seoul, it was found that first, the fluid-applied membrane elevated up to about $40^{\circ}C$, and the water vapor pressure generated from the fluid-applied membrane was about $0.3kgf/cm^2$ when the surface temperature of the waterproofing layer was raised up to about $80^{\circ}C$. Second, when the fluid-applied membrane temperature of the waterproofing layer was raised from $30^{\circ}C\;to\;35^{\circ}C,\;about\;0.1kgf/cm^2$ of water vapor pressure was generated, and when supplying a thermal source to raise the fluid-applied membrane temperature of the waterproofing layer from $35^{\circ}C\;to\;40^{\circ}C$, approximately $0.05kgf/cm^2$ of water vapor pressure was generated.

  • PDF

Property changes of GDLs and water behaviors in PEFCs (고분자전해질 연료전지 체결조건에서 기체확산층의 특성변화 및 물거동 확인)

  • Park, Gu-Gon;Lim, Nam-Yun;Ahn, Eun-Jin;Park, Jin-Soo;Yoon, Young-Gi;Lee, Won-Yong;Lim, Tae-Won;Kim, Chan-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.313-315
    • /
    • 2006
  • Proper water management is important to achieve high performance and durability of Polymer electrolyte fuel cell (PEFC). Among various stack components, gas diffusion layer (GDL) is considered as a core part to determine the gas and water transportation in a cell. To optimize the water management, the changes of properties as well as basic properties of GDLs were investigated before and after clamping of colls. Thickness, electric conductivity, porosity, hydroppobicity etc. were characterized by the same criteria. The amount of residual water after cell operation also was compared by direct measuring of weight. Based on the amount of residual water the endurance on the freeze condition was evaluated.

  • PDF

A Study on the Root-Resistance Performance of PET film Sheet applied by FRP Coating material (PET 필름 내근시트와 FRP 도막층이 일체화된 방수·방근층의 방근성능에 관한 연구)

  • Kwon, Young-Hwa;Park, Jin-Sang;Kim, Dong-Bum;Park, Wan-Goo;Kim, Byoung-Il;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.253-254
    • /
    • 2018
  • In the construction industry, a variety of Root-Resistance Waterproofing Sheets ar being developed and studied. However, defects still occur in the sheet. In this study, the performance of the navigation is studied by Root-Resistance. As a result of the test, no piercing or penetration marks were found by root in all the specimens.

  • PDF

Examination Conditions of Root Barrier for Green Roof System and Result of Intermediate Observation of Three Months against Representative Root Barrier (옥상녹화용 방근층의 방근성 시험조건 설정 및 주요 방근소재에 대한 3개월간의 중간관찰 결과)

  • Shin, Yun-Ho;Jang, Dae-Hee;Kim, Hyun-Soo;Choi, Soo-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.245-249
    • /
    • 2008
  • The purpose of this study is to test performances of 14 types of root barrier materials by applying testing plants and soils suitable for weather and natural features of Korea. For testing plants, Plioblastus pygmaed Mitford A. and Pyracantha angustifolia have been selected. For testing soil, mixture of pearlite and peat moss in 3:1 ratio(volume). Testing container has been fabricated with duplicated structure having inner and outer containers. And the outer container has 2 hinges on its side wall to allow opening and closing. Wet rock wool with 50mm in thickness has been inserted between inner and outer containers to allow root to penetrate through root barrier material and continue to grow. We planted 12 Plioblastus pygmaed Mitford A. and 4 Pyracantha angustifolia per one testing container. Three testing samples have been made for 1 type of root barrier material, which become a total 42 specimens. Planted testing samples have been installed within the greenhouse, which will be observed regularly for 2 years from now on. We started test from July 11, 2008 and had performed intermediate observations every month for initial 3 months. From the 3rd intermediate observation on Sept. 18, we confirmed that 6 types of root barrier materials have penetrated roots. Even though two types of them(EDPM Sheet, Polyethylene Sheet) have been generally used as root barrier materials for roof planting system, all of three testing samples have a lot of penetrated roots. This result proves that it is not reasonable to introduce testing methods of root barrier from Europe or Japan.

  • PDF

Characterization of Acryl Polymer Concretes for Ultra Thin Overlays (초박층 덧씌우기용 아크릴 폴리머 콘크리트의 특성 연구)

  • Kim, Dae-Young;Kim, Tae-Woo;Lee, Hyun-Jong;Kim, Hyung-Bae
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.1-8
    • /
    • 2010
  • This study is performed to evaluate the physical and mechanical characteristics of an acryl polymer concrete that is developed as an overlay material for cement concrete slabs and pavements. Various laboratory tests including viscosity, flow, compressive strength, flexural strength, tensile strength, linear shrinkage, thermal expansion and thermal compatibility tests are performed. It is observed from the laboratory tests that the acryl polymer concrete developed in this study satisfies all the requirements suggested by ACI guideline. In addition to the laboratory tests, an accelerated performance testing (APT) is conducted to validate the performance of the acryl polymer concrete. During the APT, no significant distresses are observed until 15,903,939 cycles of equivalent single axle loading is applied. Finally, a 10mm thick overlay with the acryl polymer concrete is applied on top of an old deteriorated concrete pavement to evaluate field performance. Right after the field construction, skid resistance, noise and roughness are measured. The skid resistance and noise level have been significantly improved while the roughness is increased. Periodic investigation for the field study section will be conducted to evaluate the long-term performance.

Performance Test Method on the Influence Waterproofing as Behavior of Concrete Structure (지하 콘크리트 구조물의 거동에 대한 방수층의 대응성 평가에 관한 실험적 연구)

  • Noh Jong-Soo;Kwon Shi-Won;Kwak Kyu-Sung;Kwon Kee-Joo;Oh Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • v.y2004m10
    • /
    • pp.77-81
    • /
    • 2004
  • The massive structures are not free to move with vibration, differential settlement, thermal stresses because, construction and expansion joint, crack etc., can be large enough to cause leakage as deformation of waterproofing. It has been depended on the test method of tensile/tear strength which is waterproofing performance as behavior of concrete structure crack. However, not to practically confirm the creep applied to concrete surface, even waterproofing membrane have more performance than definite strength and elasticity. Therefore, in this study will focus on the test method to consider a resistance performance about loose adhesion and deformation of waterproofing and behavior of concrete structure as construction/expansion joint, crack. Performance test method on the influence as behavior of concrete structure crack is to choose waterproofing materials and construction method which possible to confront with behavior of 50mm crack in the atmosphere and low temperature. Examine the deformation of waterproofing membrane and loose adhesion which can occur to structure in general job site, suggest standard testing method to analyze correlation waterproofing membrane and structure with 5-types of materials used in this study, such as Adhesion membrane and sheet complex, sheet and urethane complex, self-adhesive sheet, spray poly-urea, spray membrane of rubberized Asphalt.

  • PDF