• Title/Summary/Keyword: 방사능농도

Search Result 284, Processing Time 0.026 seconds

Gross-β Level in Dental Ceramic Materials (치과용 세라믹 재료의 전β 방사능 준위)

  • Kim, Sung-Hwan;Jeong, Hyun-Ja
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.4819-4825
    • /
    • 2010
  • In all of dental ceramics, these materials contained the radio-isotopes with natural abundance ratio. After dental treatment, remained dental ceramics in the oral cavity is caused for human internal dose. In this study, the gross beta activity levels were measured in dental materials including 22 dental ceramics, 1 resin, and 2 cements for estimation of human internal dose. In dental ceramic samples, the obtained results showed that the gross beta activity level varied between 1.317 ~ 2.935 Bq/g and the gross beta activity level was 2.379 Bq/g. And the same level for dentine, opacious dentine, translucent and enamel were 2.479 Bq/g, 2.491 Bq/g, 2.470 Bq/g and 2.069 Bq/g, respectively. The gross beta activity level of temporary resin and cements were negligible, compare to the same level of dental ceramics. The high gross beta activity level observed in opacious dentine code OD-A4 is 2.935 Bq/g thus mainly ascribable to 40K. The reduction of the radiation level of natural radio-isotopes and the improvement of the dental ceramic materials should be required for internal dose reduction.

DUPIC핵연료주기 핵연료의 방사선적 특성

  • 최종원;고원일;이재설;박현수
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.806-811
    • /
    • 1995
  • DUPIC 핵연료주기에서 기준 핵연료로 설정된 사용후 경수로핵연료, 신 DUPIC 및 사용후 DUPIC핵연료의 핵종별 농도, 방사능, 붕괴열, 위해지수 및 방사선원항을 시간의 함수로 그 변화 특성을 분석하고, 각 인자별로 :-B게 영향을 미치는 주요 핵종의 거동을 물질농도 측면에서 추적하여 분석.평가 하였다. 방사성물질의 농도와 방사능 및 붕괴열 측면에서 모두 사용후 DUPIC핵 연료는 사용후 경수로핵연료에 111해 양적인 감소현상이 뚜렷하게 나타났다. 이는 DUPIC핵 연료주기의 경제적인 이득은 물론 환경 안전성 측면에서 크게 기여할 것임을 시사하고 있다. 한편 섭취 위해지수는 냉각기간에 따라 약간의 차이를 보이나 두 경우 비슷한 것으로 나타났으며, 방사선원 항의 세기에 있어서는 에너지 스펙트럼에 의존하는 것으로 나타났다. 이러한 결과는 향후 전체, DUPIC핵연료주기 평가에 있어서 기본 자료로 유용하게 활용될 수 있을 것으로 기대된다.

  • PDF

Variation on Estimated Values of Radioactivity Concentration According to the Change of the Acquisition Time of SPECT/CT (SPECT/CT의 획득시간 증감에 따른 방사능농도 추정치의 변화)

  • Kim, Ji-Hyeon;Lee, Jooyoung;Son, Hyeon-Soo;Park, Hoon-Hee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.25 no.2
    • /
    • pp.15-24
    • /
    • 2021
  • Purpose SPECT/CT was noted for its excellent correction method and qualitative functions based on fusion images in the early stages of dissemination, and interest in and utilization of quantitative functions has been increasing with the recent introduction of companion diagnostic therapy(Theranostics). Unlike PET/CT, various conditions like the type of collimator and detector rotation are a challenging factor for image acquisition and reconstruction methods at absolute quantification of SPECT/CT. Therefore, in this study, We want to find out the effect on the radioactivity concentration estimate by the increase or decrease of the total acquisition time according to the number of projections and the acquisition time per projection among SPECT/CT imaging conditions. Materials and Methods After filling the 9,293 ml cylindrical phantom with sterile water and diluting 99mTc 91.76 MBq, the standard image was taken with a total acquisition time of 600 sec (10 sec/frame × 120 frames, matrix size 128 × 128) and also volume sensitivity and the calibration factor was verified. Based on the standard image, the comparative images were obtained by increasing or decreasing the total acquisition time. namely 60 (-90%), 150 (-75%), 300 (-50%), 450 (-25%), 900 (+50%), and 1200 (+100%) sec. For each image detail, the acquisition time(sec/frame) per projection was set to 1.0, 2.5, 5.0, 7.5, 15.0 and 20.0 sec (fixed number of projections: 120 frame) and the number of projection images was set to 12, 30, 60, 90, 180 and 240 frames(fixed time per projection:10 sec). Based on the coefficients measured through the volume of interest in each acquired image, the percentage of variation about the contrast to noise ratio (CNR) was determined as a qualitative assessment, and the quantitative assessment was conducted through the percentage of variation of the radioactivity concentration estimate. At this time, the relationship between the radioactivity concentration estimate (cps/ml) and the actual radioactivity concentration (Bq/ml) was compared and analyzed using the recovery coefficient (RC_Recovery Coefficients) as an indicator. Results The results [CNR, radioactivity Concentration, RC] by the change in the number of projections for each increase or decrease rate (-90%, -75%, -50%, -25%, +50%, +100%) of total acquisition time are as follows. [-89.5%, +3.90%, 1.04] at -90%, [-77.9%, +2.71%, 1.03] at -75%, [-55.6%, +1.85%, 1.02] at -50%, [-33.6%, +1.37%, 1.01] at -25%, [-33.7%, +0.71%, 1.01] at +50%, [+93.2%, +0.32%, 1.00] at +100%. and also The results [CNR, radioactivity Concentration, RC] by the acquisition time change for each increase or decrease rate (-90%, -75%, -50%, -25%, +50%, +100%) of total acquisition time are as follows. [-89.3%, -3.55%, 0.96] at - 90%, [-73.4%, -0.17%, 1.00] at -75%, [-49.6%, -0.34%, 1.00] at -50%, [-24.9%, 0.03%, 1.00] at -25%, [+49.3%, -0.04%, 1.00] at +50%, [+99.0%, +0.11%, 1.00] at +100%. Conclusion In SPECT/CT, the total coefficient obtained according to the increase or decrease of the total acquisition time and the resulting image quality (CNR) showed a pattern that changed proportionally. On the other hand, quantitative evaluations through absolute quantification showed a change of less than 5% (-3.55 to +3.90%) under all experimental conditions, maintaining quantitative accuracy (RC 0.96 to 1.04). Considering the reduction of the total acquisition time rather than the increasing of the image acquiring time, The reduction in total acquisition time is applicable to quantitative analysis without significant loss and is judged to be clinically effective. This study shows that when increasing or decreasing of total acquisition time, changes in acquisition time per projection have fewer fluctuations that occur in qualitative and quantitative condition changes than the change in the number of projections under the same scanning time conditions.

Measurement of MDA of Soil Samples Using Unsuppression System and Compton Suppression of Environmental Radioactivity in Processing Technology (환경 방사능 처리기술에서의 Compton suppression 및 Unsuppression system을 이용한 토양시료의 MDA 측정)

  • Kang, Suman;Im, Inchul;Lee, Jaeseung;Jang, Eunsung;Lee, Mihyeon;Kwon, Kyungtae;Kim, Changtae
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.6
    • /
    • pp.293-299
    • /
    • 2014
  • Compton suppression device is a device by using the Compton scattering reaction and suppress the Compton continuum portion of the spectrum, so can be made more clear analysis of gamma ray peak in the Compton continuum region. Measurements above background occurs or, radioactivity counts of radioactivity concentration value of $^{40}K$ nuclides $^{137}Cs$ and natural radioactivity artificial radioactivity detected from the surface soil sample, unwanted non-target analysis and interference peak who dotted line you know the calibration of the measurement energy is allowed to apply the (Compton suppression) non-suppressed spectrum inhibition spectrum and (Compton Unsuppression) the background to the measured value of the activity concentration value of the standard-ray source is detected relative to the peak of By measuring according to the different distances cause $^{137}Cs$, and comparative analysis of the Monte Carlo simulation, in order to obtain a detection capability for efficient, looking at the Compton inhibitor, as the CSF value increases with increase in the distance, more It was found that the background due to Compton continuum of the measured spectrum suppression mode Compton unrestrained mode can know that the Compton suppression many were made, using a $^{137}Cs$ is reduced.

Measurement and Estimation for the Clearance of Radioactive Waste Contaminated with Radioisotopes for Medical Application (의료용 방사성폐기물 자체처분을 위한 방사능 측정 및 평가)

  • Kim, Changbum;Park, MinSeok;Kim, Gi-Sub;Jung, Haijo;Jang, Seongjoo
    • Progress in Medical Physics
    • /
    • v.25 no.1
    • /
    • pp.8-14
    • /
    • 2014
  • The amounts of radioactive wastes to be disposed in the medical institute have been increased due to development of radiation diagnosis and therapy rapidly. They are produced mostly by the very short lived radioisotopes such as $^{18}F$ used in PET/CT, $^{99m}Tc$, $^{123}I$, $^{125}I$ and $^{201}Tl$, etc. IAEA proposed a criteria for the clearance level of waste which depends on the individual ($10{\mu}Sv/y$) and collective dose (1 man-Sv/y), and concentration of each nuclide (IAEA Safety Series No 111-P-1.1, 1992 and IAEA RS-G-1.7, 2004). Radioactive wastes of $^{18}F$, $^{99m}Tc$, $^{123}I$, $^{125}I$ and $^{201}TI$ in the several types of container like Marinelli beaker, vial and plastic, were collected to measure the concentration of the waste of each nuclide in accordance with IAEA criteria. The measurement method and procedure of determining specific activity of the wastes using gamma emitters like MCA, gamma counter and beta emitters were developed. For the efficiency calibration of the detectors, CRM (certified reference material) which has the same dimension and shape was provided by Korea Research Institute of Standards and Science (KRISS). Correction factor of the radioactivity decay was calculated based on the measurement results, and the consideration of mutual relation with theoretical equation. The result of this study will be proposed as ISO standard.

Cumulative Deposition of $^{137}Cs$ in the Soil of Korea (한국토양에 존재하는 $^{137}Cs$ 방사능 분포)

  • Lee, Myung-Ho;Choi, Yong-Ho;Shin, Hyun-Sang;Kim, Sang-Bog;Lee, Chang-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.2
    • /
    • pp.97-102
    • /
    • 1998
  • The cumulative deposition of $^{137}Cs$ in the soil of Korea has been studied. Using ${\gamma$-ray spertrometry, the conrentrations of $^{137}Cs$ were determined for the soil samples collected to a depth of 20 cm. The average accumulated depositions of $^{137}Cs$ were estimated roughly to be 2,501 ${\pm}$ $m^{-2}$ in the forest and 1,058 ${\pm}$ 322 Bq $m^{-2}$ in the hill. The inventory value of $^{137}Cs$ in the forest is about two times higher than that in the hill. Except for some cases, the concentrations of $^{137}Cs$ in the undisturbed soils decreased exponentially with increasing the soil depth. The influences of rainfall, organic matter content, clay content and pH on the deposition of $^{137}Cs$ were studied using the field method. Among these factors, the organic matter content played the most important role in the retention and relative mobility of $^{137}Cs$ in the soil. The other factors such as rainfall, clay content and pH showed weak correlation with the deposition of $^{137}Cs$ in the soil.

  • PDF

Radioactivity Analysis of Soils Stored in KAERI for Regulatory Clearance (연구소 내 저장 중인 토양의 규제해제를 위한 방사능 분석)

  • Hong D.S.;Kim T.K.;Kang I.S.;Cho H.S.;Shon J.S.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.161-166
    • /
    • 2005
  • In KAERI, about 3,100 drums containing soil have been stored. The soils were generated from the decommissioning process of Seoul office in 1988. Those soils occupy about $27\%$ of the capacity of the radioactive waste storage facility and make it difficult to maintain the storage facility. The major radioactive nuclides contained in the soils were expected to be Co-60 and Cs-137. As 16 years have passed, the radioactivity of those nuclides have decayed a lot. In this study, as a basis of regulatory clearance, radionuclides and radioactivity concentration of soils were analyzed. As a result, there are only Co-60 and Cs-137 in soils as ${\gamma}-emitters$. The total concentration of ${\gamma}-emitters$ in soil is analyzed as about $0.01\;{\sim}\;0.12$ Bq/g. As the soils are expected to be regulatory cleared in 2009, those concentrations will decay to be less than 0.1 Bq/g. This concentration can be meet the regulatory criteria suggested by IAEA. The regulatory clearance will be proceeded based on not only the assessment results of environmental influence but also related regulations.

  • PDF