국내 의료기관 핵 의학과에서는 환자에게 방사성 의약품을 주입하기 위해 체내검사의 80% 이상이 $^{99}Mo/^{99m}TcI$ Generator에서 방사선 핵종인 $^{99m}TcI$ 용출하여 사용한다. 사용이 종료된 Generator 중 외국으로 부터 수입한 국외용 Generator는 각 의료기관에서 자체 처분을 시행한다. 각 의료기관에서는 자체처분을 시행 할 때에는 방사성 폐기물이 자체처분 허용 농도 이하를 만족하여야 한다. 국내에 제시된 자체처분에 대한 지침은 방사선 감쇠 계산식으로 도출된 값으로 Generator 사용 후로부터 80일 이후 자체처분이 가능하다는 내용을 제시하였다. 이러한 지침이 직접 Generator를 가지고 측정한 데이터를 통해 비교 분석하여 타당성이 있는지에 대하여 연구하고자 한다. 결과적으로 1000 mCi 용량의 Generator 의 경우 Generator 구성 요소 중 반감기가 가장 길며, 방사능이 많은 $^{99}Mo$(몰리브덴) column을 가지고 실험하였을 때, 방사성 폐기물로 차체 처분 허용농도 이하가 되는 일수는 $^{99m}TcI$을 용출하여 유도한 기간은 72일, 직접 칼럼을 측정하여 도출한 처분 일은 71일이였다. 직접적으로 연구한 결과는 지침의 내용에서 제시한 자체처분 일수보다 8~9일 정도 보관 일수 차이가 있으나, 국내 차체 처분 보관 일수의 범위 안에 속하므로 국내 자체처분에 대한 지침이 타당성이 있음을 확인 하였다.
본 연구에서는 방사성 폐액내 포함된 방사성 핵종인 세슘-137(Cs-137) 및 스트론튬-90(Sr-90)의 친환경적인 제염을 위해 미세조류의 적용 가능성을 평가하였다. Cs-137 및 Sr-90이 각각 함유된 일원계 표준 방사성 용액과 3차 증류수를 희석하여 1.5 Bq/mL Cs-137, 1.0 Bq/mL Sr-90 농도로 제조한 뒤 실험에 사용하였다. 미세조류는 2종을 사용했으며, Sr-90 제염에는 Chlorella Vulgaris를 사용하였고, Cs-137 제염에는 Hematococcus pluvialis를 사용하여 실험을 수행하였다. 실험 방법은 2주 간 배양된 미세조류를 반투과막이 부착된 병에 투입한 뒤, 미세조류가 투입된 병을 제조된 방사성 용액에 투입하여, 반투과막을 통해 미세조류와 방사성 용액이 48 시간 동안 반응하도록 하였다. 각 시료에 대한 방사능 농도 분석은 γ선 동위원소인 Cs-137은 감마선 핵종 분석기를 사용하였고, β선 동위원소인 Sr-90은 액체섬광계수기(LSC: Liquid Scintillation Count)를 사용하였다. 실험 결과, Cs-137은 약 88.0 %, Sr-90은 약 89.7 % 제염이 가능함을 확인하였으며, Sr-90은 2단 제염 방법에 의해 최종적으로 약 98.6 % 제염이 가능하였다.
세슘은 물속에서 고상보다는 이온이나 착염 등 용존 형태로 존재하는 특성이 강하여, 오염 수계로부터 세슘 제거가 어려운 것으로 알려져 있다. 최근 많은 연구들이 수계 내에서 세슘의 제거효율이 높은 흡착제를 개발하는데 집중하고 있다. 본 연구에서는 대나무 활성탄을 흡착제로 사용하여 수계 내에 존재하는 세슘을 효과적으로 제거하는 실내실험을 실시하였다. 수용액으로부터 대나무 활성탄의 세슘 제거효율을 측정하고, 최적의 세슘 제거능을 가지는 흡착 조건을 도출하고자 다양한 조건에서 흡착 배치실험을 수행하였다. 국내에서 유통되고 있는 5 종류의 대나무 활성탄의 표면 특성을 SEM-EDS와 XRD 분석으로 규명하였으며, 이 중에서 비표면적이 큰 3 종류의 대나무 활성탄을 대상으로 세슘 제거 배치실험을 실시하였다. 다양한 초기 세슘 농도를 가지는 인공수(0.01~10 mg/L 범위)를 대상으로 대나무 활성탄에 의한 수용액 내 세슘 제거량을 측정하여 제거효율을 계산하였고, 두 종류의 흡착 등온식들을 흡착 배치실험 결과에 대응시켜 흡착 상수값을 결정함으로서, 대나무 활성탄의 세슘 흡착 특성을 규명하였다. FE-SEM 분석 결과, 대나무 활성탄은 표면이 다수의 기공을 포함하는 대나무의 섬유질 조직을 그대로 유지하는 입자들로 구성되어, 이들 섬유질 조직 내 다양한 형태의 기공들과 엽상조직 표면들이 주요 세슘 흡착공간인 것으로 밝혀졌다. 흡착 배치실험 결과, C type 대나무 활성탄의 세슘 제거효율이 가장 높았는데, 특히 수용액의 세슘 초기 농도가 1.0 mg/L 이하인 경우에도 75 % 이상(최고 82 %)을 나타내어, 원전사고 등에 의해 오염된 현장 지하수나 지표수(해수 포함)의 세슘농도가 대부분 1.0 mg/L 이하임을 고려하면, 실제 오염수 정화 가능성이 높을 것으로 밝혀졌다. 수용액의 온도는 $5-15^{\circ}C$ 범위, pH는 3-11 범위에서 높은 세슘 제거효율이 일정하게 유지되는 것으로 나타나 다양한 오염수에 적용할 수 있을 것으로 판단되었다. 흡착 배치실험 결과는 Langmuir 흡착모델과 유사하였으며, C type 대나무 활성탄의 최대흡착농도($q_m:mg/g$)값은 63.4 mg/g으로 기존의 상용화된 흡착제 값보다 높았고, 수용액의 초기 세슘 농도가 1.0 mg/L이하인 경우 표면흡착률(surface coverage) 값도 낮게 유지되어, 적은 양의 세슘으로 오염된 수계를 효과적으로 정화할 수 있음을 입증하였다.
하계 한국 동해 남부 연안해역의 4개 단면에서 1991년 9월 $2{\sim}8$일 사이에 수온관측 및 Ra동위체의 농도를 측정하였다. 수온의 연직분포를 보면, 북쪽 단면 A와 B에서는 강한 계절수온약층이 대체적으로 표층 $10{\sim}30m$ 사이의 수층에 존재하고, 단면 C에서는 $30{\sim}50m$ 수층에 수온약층이 나타난다. 단면 D에서는 특이하게 2개의 수온약층이 존재하고 연안쪽 정점에서 바깥쪽 정점으로 갈수록 수온약층의 존재수심은 급격히 깊어지는 것이 특징적이다. 그리고, 수온약층 상부에는 수온 $20^{\circ}C$이상의 대마난류표층수가 존재하고, 수온약층 바로 아래 수층에는 수온 $12{\sim}7^{\circ}C$의 대마난류중층수가 나타나며, 이 아래 수층에는 기원이 불분명한 $10^{\circ}C$이하의 냉수괴가 나타나고, 수심 약 150 m 이심층에는 $1^{\circ}C$이하의 동해고유수가 존재한다. 9개 정점의 $2{\sim}3$개 수층에서 채수한 해수의 Ra동위체 농도를 측정한 결과, 대마난류표층수의 특성값은 Ra-228이 $225{\pm}23$ dpm/kl, Ra-226이 $99{\pm}6$ dpm/kl이며, Ra-228/Ra-226 방사능의 비는 $1.9{\sim}2.6$범위였다. 대마난류중층수의 특성값은 Ra-228이 $71{\pm}12$ dpm/kl로 표층수중 농도의 약 1/3정도이고, Ra-226은 $80{\pm}6$ dpm/kl이며, 두 동위체의 비는$0.7{\sim}1.1$범위였다. 한편, 수온 $2{\sim}6^{\circ}C$범위의 냉수괴는 Ra-228이 $59{\pm}10$ dpm/kl이고, Ra-226은 $85{\pm}9$ dpm/kl였으며, 두 동위체의 비는 $0.6{\sim}0.9$범위였다. $65{\sim}120$ m 사이의 수층에서 수온 $2{\sim}6^{\circ}C$범위를 보이는 냉수괴의 기원을 밝히기 위하여 수온에 대한 용존산소 및 Ra동위체의 농도(혹은 동위체비)의 diagram을 분석하였다. 그 결과, 이 냉수괴는 북한한류수인 것으로 판명되었다. $T-O_2$ diagram으로는 이 냉수괴의 기원은을 알기 어려웠지만 Ra동위체의 농도를 이용하면 보다 명료하게 그 기원을 알 수 있었다. 그러므로, 동해에서 Ra동위체의 연직분포 측정은 각종 수괴의 혼합확산이나 변질과정을 이해하는 데 유용할 것이다.
우라늄으로 오염된 지하수를 정화하기 위하여 해바라기(Sunflower; Helianthus annuus L.), 강낭콩(Bean; Phaseolus vulgaris var.), 그리고 갓(Indian mustard; Brassica juncea (L.) Czern.)을 이용한 수생법(Rhizofiltration)의 우라늄 제거 효율을 규명하기위한 실내 실험을 실시하였다. 안정우라늄 표준 용액을 사용하여 초기 농도를 30 ${\mu}g$/L와 80 ${\mu}g$/L로 적정한 인공오염지하수를 대상으로 72시간 수생법을 실시하여 일정 시간 간격으로 오염지하수의 우라늄농도를 측정함으로써 시간에 따른 식물의 우라늄 제거 효율을 계산하였다. 해바라기의 경우 수생법 72시간 내에 인공오염수 내 우라늄의 81%와 89%가 제거되었으며, 강낭콩은 72%와 80% 제거율을 나타내었고, 갓의 경우에는 80%와 60%가 제거되어 수생법의 우라늄 제거 효율이 매우 높은 것으로 나타났다. 초기 우라늄 농도가 500 ${\mu}g$/L 이상(미국 EPA 수질허용한계농도인 30 ${\mu}g$/L 보다 18배 이상)되는 인공오염수를 대상으로 수생법을 실시한 결과 해바라기, 강낭콩, 갓의 경우 각각 97%, 70%, 77%의 높은 제거 효율을 나타내어 우라늄으로 심각하게 오염된 지하수의 경우에도 수생법을 적용할 수 있는 것으로 나타났다. 인공 오염수의 pH에 따른 수생법의 우라늄 제거 효율 변화 실험 결과, 오염수의 pH가 증가할 수 록 우라늄 제거 효율은 감소하였으며, 갓의 경우 pH 3에서 pH 9로 증가함에 따라 제거 효율은 83%에서 42%로 감소하였다. 실험 후 식물에 농축된 우라늄량을 습식분해법을 이용하여 부위별로 측정한 결과, 식물로 이동한 우라늄의 99%가 뿌리에 농축되어 있는 것으로 나타나, 수생법을 적용한 후 성장한 오염식물을 처리하는 경우 농축이 심한 뿌리 부분만을 후처리함으로써 복원 비용과 시간을 절감할 수 있는 것으로 나타났다. 마지막으로 우라늄 농도가 81.4 ${\mu}g$/L인 대전지역에 위치한 천정 지하수를 대상으로 수생법을 실시한 결과, 해바라기의 경우 인공오염지하수 실험 결과와 비슷한 제거 효율이 95.2%인 것으로 나타나, 친환경 정화방법인 수생법에 의한 우라늄 오염지하수 처리 방법이 실제 오염 현장에서 효과적으로 적용될 수 있을 것으로 판단되었다.
울진원자력 발전소 인근 해역의 해저 퇴적물에 대하여 광물분석과 함께 $^{137}Cs$의 농도를 분석하였고 이와 더불어 총 유기탄소(total organic carbon, TOC)의 양과 퇴적물의 입자 크기를 분석하여 퇴적물의 특성과 더불어 이들의 상관관계에 대하여 알아보았다. 퇴적물의 입자 크기는 주로 모래크기에 해당되며 $-0.48\~3.6Md\phi$의 분포를 보인다. TOC와 $^{137}Cs$의 경우 각각 $0.06\~1.75\%$와 최소검출활동도(Minimum detectable activity, MDA)$\~4.0Bq/kg-dry$의 범위로 나타나며 평균 방사능의 농도는 $1.15{\pm}0.62Bq/kg-dry$였다. 일반적으로 다른 해역의 경우보다 큰 입자와 작은 TOC의 양과 $^{137}Cs$의 농도가 특징적이다. 본 해역 퇴적물의 구성 광물은 주로 석영과 장석류들(알바이트, 미사장석, 그리고 약간의 정장석)로 구성되어 있으며 미량의 휘석, 방해석, 각섬석 등의 조암광물들과 함께 $10{\AA}$의 피크를 갖는 광물(주로 흑운모)과 일부 녹니석등의 광물들이 혼재해 분포하고 있는 것으로 나타났다. 이들 광물 중 흑운모가 가장 대표적으로 $^{137}Cs$의 분포와 상관관계를 보이고 있으며 이는 흑운모의 풍화에 따른 닮은 모서리 자리(frayed edge site, FES) 나 시료에 혼재되어 존재할 가능성이 있는 일라이트 등에 의한 결과로 판단된다. 여러 가지 퇴적물의 특성 중 $^{137}Cs$의 분포와 가장 밀접한 양상을 보이는 것은 TOC의 농도로 이것은 본 해역에서 Cs을 강하게 흡착할 만한 광물이 존재하기 않기 때문이며, 따라서 $^{137}Cs$의 분포는 광물분포 보다는 TOC의 함량에 더 큰 영향을 받고 있음을 보여준다.
철대사(鐵代謝)에 관(關)한 연구(硏究)는 과거(過去) 30년(年)동안 새로운 검사방법(檢査方法)의 도입(導入)으로 눈부신 발전(發展)을이룩하였다. 1937년(年) Heilmeyer 등(等)에 의(依)하여 Ortho-phenanthrolin방법(方法)의 개발(開發)로 저색소성빈혈(低色素性貧血)의 원인(原因)이 구명(究明)되고 또한 이에 대(對)한 치료(治療)의 원칙(原則)이 세워졌다. 그 후 심(甚)한 감염(感染)이나 악성종양(惡性腫瘍)을 가진 환자(患者)者에서 관찰(觀察)되는 빈혈(貧血)에 대(對)해서 하나의 가설(假說)을 세워 이를 설명(說明)하려 하였는데 이는 곧 혈장(血漿)으로부터 철분(鐵分)이 신속(迅速)히 소실(消失)되어 망내계(網內系)나 병변(病變)이 있는 국소부위(局所部位)에 주(主)로 모여 들어 특수(特殊)한 방어기능(防禦機能)을 발휘(發揮)한다는것으로 연자(演者)는 방사성동위원소(放射性同位元素)를 이용(利用)하여 이 가설(假說)을 증명(證明)하였으며 이 연구(硏究)에는 또한 이문호교수(李文鎬敎授)가 Freiburg대학(大學) 유학중(留學中) 참여(參與)한 바 있다. 철대사(鐵代謝)를 파악(把握)하기 위(爲)해서 $^{59}Fe$가 흔히 사용(使用)되는데 이러한 방사성동위원소(放射性同位元素)를 이용(利用)함으로서 다음 사항(事項)들을 관찰(觀察)할 수 있었다. 즉(卽) 1. 소화장기(消化臟器)로 부터의 철흡수(鐵吸收) 2. 혈장(血漿)에서의 철(鐵)의 소실속도(消失速度) 3. 혈장내(血漿內)에서의 철교체율(鐵交替率) 4. 적혈구(赤血球)의 철이용(鐵利用) 5. 생체내(生體內)의 철분포(鐵分布) 6. 철배설(鐵排泄)의 정량적(定量的) 분석(分析) 또한 근년(近年)에는 특수(特殊)한 기능(機能)을 발휘(發揮)할 수 있는 동위원소(同位元素)를 이용(利用)하여 철흡수(鐵吸收) 및 대사이외(代謝以外)에도 적혈구(赤血球)의 수명(壽命)과 혈액량등(血液量等)을 측정(測定)하게 되었다. 경구적(經口的)으로 투여(投與)된 철(鐵)은 대부분(大部分) 십이지장(十二指腸)의 상부(上部)에서 흡수(吸收)되고 무기철(無機鐵)이 보다 쉽게 흡수(吸收)되어 가(價)의 상태(狀態)로 된다. 혈장(血漿)에서는 transferrin에 의(依)해서 철(鐵)이 운반(運搬)된다. 혈장철(血漿鐵)의 대부분(大部分)은 혈색소분해(血色素分解)에서 유래(由來)되며 이는 다시 혈색소(血色素)의 재생(再生)에 이용(利用)되는데 혈장내(血漿內) 철교체율(鐵交替率)은 방사성철(放射性鐵)을 이용(利用)하여 측정(測定)할수 있다 이와같이 방사성철(放射性鐵)을 이용(利用)하여 철대사과정(鐵代謝過程)을 숙지(熟知)함으르서 임상(臨床)에 응용(應用)하기에 이르렀으며 다음과 같은 질환(疾患)의 진단(診斷)에 특(特)히 큰 도움을 준다. A. 진성철결핍증(眞性鐵缺乏症) : 혁색소철(血色素鐵) 및 저장철(貯藏鐵)을 포함(包含)한 생체내(生體內) 전철분(全鐵分)의 부족(不足)된 상태(狀態)로서 실혈(朱血)에 의(依)한 것이 대부분(大部分)이다. 이 경우 철흡수(鐵吸收)는 증가(增加), 혈장철치(血漿鐵値)는 저하(低下), 철소실속도(鐵消失速度)는 증가(增加)되며 혈장철(血漿鐵) 교체율(交替率)은 항진(亢進) 혹(或)은 정상(正常)이다. B. 심(甚)한 염증성(炎症性) 질환(疾患) : 이 경우에도 혈장철치(血漿鐵値)의 저하(低下), 소실속도(消失速度)의 증가(增加), 교체율(交替率)은 정상(正常)보다 4배(倍)까지 증가(增加)할 수 있다. 골수(骨髓)에서 보다는 간(肝), 비(脾)와 같은 망내계(網內系)에 방사성철(放射性鐵)이 집결(集結)되는 것으로 보아 혈색소철(血色素鐵)보다는 저장철(貯藏鐵)이 관여(關與)되는 것이다. C. 원발성(原發性) 혈색소증(血色素症)(Idiopathic hemochromatosis) : 혈장철(血漿鐵)의 증가(增加)가 현저(顯著)하며 transferrin 농도(濃度)는 정상(正常)보다 낮으나 거의 대부분(大部分)의 철분(鐵分)으로 포화(飽和)된다. 철흡수(鐵吸收)는 증가(增加)되고 철소실속도(鐵消失速度)는 감소(減少) 되어 있으나 교체율(交替率)은 항진(亢進)되어 있다. 혈장철(血漿鐵)은 간(肝), 비(脾) 등(等)의 기관(器管)으로 저장집결(貯藏集結)되어 철저류(鐵貯溜)가 증대(增大)되므로 철이용증((鐵利用症)은 저하(低下)된다. D. 선천성(先天性) 무(無)$\ulcorner$트란스헤 린$\lrcorner$증(症)(Congenital atransferrinemia) : 방사성철(放射性鐵)을 이용(利用)한 진단방법(診斷方法)으로 Freiburg에서 7세(歲)의 소녀(少女)에서 발견(發見)한 증례(症例)인데 간(肝), 비(脾), 심(心)의 비대(肥大)가 임상적(臨床的)으로 인지(認知)되었고 중증(重症)의 철결핍상(鐵缺乏狀)을 검출(檢出)할 수 있었다. 철흡수율(鐵吸收率)의 상승(上昇), 혈장철치(血裝鐵値)의 감소(減少), 혈장철소실속도(血漿鐵消失速度)의 증가(增加), 혈장철교체율(血漿鐵交替率)의 상승(上昇) 및 적혈구(赤血球)에서의 철분이용율(鐵分利用率)의 저하(低下)를 ferrokinetic study에서 알 수 있었고 간(肝)에서 고도(高度)의 방사능(放射能)이 검출(檢出)되는 반면(反面), 비(脾)에서는 극소(極小), 골수(骨髓)에는 전(全)혀 방사능(放射能)이 들어가 있지 않았다. 이 증례(症例)와 같이 transferrin이 없으면 철분(鐵分)은 쉽게 조직(組織)으로 들어가 hemosiderin으로 저장(貯藏)되고 골수(骨髓)는 고도(高度)의 철결핍증(鐵缺乏症)을 나타내어 기관철침착증(器管鐵沈着症)과 철결핍성빈혈(鐵缺乏性貧血)이 동시(同時)에 나타나게 된다. 철대사장애면(鐵代謝障碍面)으로 보아 많은 미해결점(未解決點)이 남아 있으며 앞으로 자라나는 젊은 학도(學徒)들이 구명(究明)할 문제(間題)라고 믿는다.
PET/CT 영상에서 인공물은 정량성을 저하시키는 원인이 된다. 여러 인공물 중 방사성의약품 주사 시 주사오류로 인해 발생할 수 있는 열소는 그 주변부에 인공물을 발생시켜 영상의 질을 저하시킬 뿐 아니라 정량평가의 정확도를 저하시킨다. 본 연구에서는 영상의 재구성시 표시시야(Display Field of View, DFOV)의 중심이동법을 이용하여 주사부위에 발생한 열소부위를 제거하고 정량평가에 미치는 영향을 평가해 보고자 한다. GE Discovery STE 16 (GE Healthcare, Milwaukee, USA) 장비에 1994 NEMA 모형을 이용하였다. 모형에 0.005 MBq/mL의 $^{18}F-FDG$를 채우고 모형주변에 열소대 배후방사능의 농도비가 200:1이 되도록 열소를 만들어 모형외곽에 인위적으로 두었다. 영상획득 후 DFOV의 중심 위치를 이동하여 열소부위가 DFOV로부터 벗어나도록 영상을 재구성한 후 적용 전, 후를 비교하였다. 영상에 대한 평가는 열소의 영향을 받지 않은 부위에서 DFOV 중심이동 전, 후의 배후방사능의 평균 표준섭취계수와 표준편차를 산출하여 재구성에 의한 영향을 비교, 평가하였다. 또한 인공물이 발생한 부위에 관심영역을 설정하고 인공물의 발생 전, 후의 평균 표준섭취계수와 표준편차를 산출하여 백분율 오차를 각각 비교하였다. 모형영상 내 열소로 인한 인공물의 영향을 받지 않은 부위에서 DFOV 중심이동 법을 적용하기 전 평균 표준 섭취계수는 $0.67{\pm}0.06g/mL$이었고, 적용 후에는 $0.65{\pm}0.06g/mL$로 나타났다. 또한 영상에서 열소에 의해 발생한 인공물이 있는 부위의 평균 표준섭취계수와 표준편차는 $0.32{\pm}0.08g/mL$였으며, DFOV 중심이동을 적용한 경우는 $0.56{\pm}0.12g/mL$로 나타났다. 이 때 열소의 영향을 받은 열소 인접부위와 상대적으로 영향을 받지 않은 부위에 대한 백분율 오차는 65.3%와 97.4%로 각각 나타났다. PET/CT 영상에서 열소에 의해 발생 된 인공물은 DFOV의 중심이동법 적용 시 평균 표준섭취계수를 32.1% 향상시킬 수 있으며, 이 때 중심이동 법에 의한 다른 부위의 영향은 유의한 차이가 없음을 알 수 있다. 결과에서와 같이 방사성의약품의 주사오류 시 발생한 종 창 등으로 발생되는 인공물의 영향은 DFOV 중심이동법을 적용할 경우 보다 정확한 정량평가가 가능해지고 그로 인하여 영상의 진단적 가치를 높일 수 있을 것이다.
양성자선을 이용한 치료는 기존의 광자를 이용하였을 때 보다 병소 주위 정상 조직에 영향을 거의 주지 않고 암세포를 치료할 수 있는 정밀한 방사선 치료법이다. 양성자선 조사 시 인체 내 조직과의 상호작용으로 양전자 방출 핵종이 발생하며 양전자 방출 단층촬영은 이러한 특성을 이용하여 양성자 치료 후 그 효과를 확인하는데 이용된다. 그러나 이 때 발생하는 소멸복사선은 짧은 반감기로 인하여 영상 획득 시간에 어려움이 발생하게 된다. 본 논문에서는 양성자선 조사 후 영상 획득 시간에 따른 영상의 차이를 비교하여 그 효율성을 알아보고자 한다. 증류수를 가득 채운 2001 IEC body 모형에 37, 28, 22 mm 구체를 삽입하고 구체의 중심에 양성자선이 조사되도록 CT로 치료 계획을 수립하였다. 양성자선은 wobbling technique, gantry $0^{\circ}$, 100 MU, 구체 크기별로 범위는 각각 16.4, 14.7, 9.3 cm로 조사하였다. 조사를 마친 모형은 약 5분의 거리를 이동하여 PET/CT로 1 분씩 50 개의 영상을 획득하여 1에서 10. 11에서 21, 21에서 30, 31에서 40, 41에서 50으로 10개씩 영상을 합산하여 재구성 하였다. 합산된 영상에서 열소 부위와 배후 방사능에 ROI를 그린 후 방사능 농도 값을 산출하고 대조도 잡음비를 계산하여 영상의 질을 평가하였다. 전체 영상의 CNR은 37 mm 구체에서 0.43, 0.42, 0.40, 0.31, 0.21로 나타났으며, 28 mm 구체는 0.36, 0.32, 0.27, 0.19, 0.09로 측정되었다. 22 mm의 구체는 0.25, 0.25, 0.19, 0.11, 0.08로 측정되었다. CNR은 37 mm 구체에서는 30분 이후에 빠르게 감소하였고, 28 mm와 22 mm 에서는 20분 이후에 급격히 감소하였다. 치료 효과 확인을 위한 PET 촬영에서 양성자선 조사 후 데이터의 획득 시점과 총 획득 시간이 매우 중요하다. 실험 결과에서 병소의 크기가 22 mm 이상이라고 가정한다면 영상 획득은 조사 후 25분 내에 완료될 수 있도록 진행하는 것이 바람직하다. 종양의 크기가 작거나 저 선량이 조사될 경우에는 보다 긴 영상 획득 시간을 적용한다면 도움을 될 것으로 사료된다.
추적 검사에서의 PET/CT 재구성 영상은 추적자의 분포를 균일하고 정확하게 표현하여야 일관된 정량분석 값을 제공 할 수 있을 것이다. 그러나 PET/CT 장비의 제한된 공간분해능 때문에 발생하는 부분 체적 효과(Partial Volume Effect: PVE)로 인해 관심영역의 방사능 농도가 실제의 값보다 낮게 측정될 가능성이 있고, 따라서 관심부위의 SUV가 실제 값보다 낮게 측정 될 가능성이 있다. 본 연구에서는 PET/CT 스캐너의 PVE를 보정하는 회복계수(Recovery Coefficient: RC)를 팬텀 실험을 통해 산출하고, 실제 PET/CT 검사 자료에 적용하여 보정 전과 후 SUV를 비교 분석 하고자 한다. ACR phantom을 이용하여 1000 mL의 증류수에 20.72 MBq (0.56 mCi)을 균일하게 희석하고 열소 원통 (hot cylinder-2.5, 1.6, 1.2, 0.8 cm in diameter)에 주입하였다. 또한 6440 ml의 증류수에 33.30 MBq (0.90 mCi), 22.20 MBq (0.60 mCi), 16.65 MBq (0.45mCi)을 균일하게 희석하고 배후 방사능을 채워 열소 원통과 배후방사능이 각각 4:1, 6:1, 8:1 (Hot/Background ratio: H/B ratio)이 되도록 만들어 3회 반복 실험하였다. 서울아산병원의 Biograph Truepoint 40 (SIEMENS, Germany) 장비로 whole body protocol을 사용하여 phantom 실험 및 환자 검사를 시행하였다. 2010년 7월부터 8월까지 서울아산병원에서 PET/CT 검사 후 폐암으로 판정 받은 환자 30명을 대상으로, 본 연구의 결과에서 산출된 RC를 적용하여 PVE 보정 전과 후 SUV를 비교 분석하였다. 열소 원통과 배후방사능이 4:1일 때 2.5, 1.6, 1.2, 0.8 cm 에서의 RC는 각각 0.75, 0.72, 0.40, 0.27이었고, 6:1일 때 0.74, 0.59, 0.55, 0.43이었으며, 8:1일 때 0.77, 0.76, 0.58, 0.42로 열소 영역의 크기가 작아질수록 RC가 감소하였다. 폐암으로 판정 받은 환자 중에서 30명의 환자를 무작위 표본 추출하여 보정 전과 후의 SUV 최대값을 비교 분석 한 결과, 보정 전 평균은 7.83이었고 보정 후 평균은 10.31이었다. 또한 보정 전과 후의 SUV 최대값을 대응 표본 t 검정으로 차이를 분석한 결과, 통계적으로 유의한 차이가 있었다(t=7.21, p=0.000). PVE에 의해서 과소 평가 되었던 보정 전의 SUV가 보정 후에는 증가되는 것을 확인할 수 있었다. 병변의 크기와 H/B ratio가 환자마다 제각기 다른 값을 갖기 때문에, RC를 사용하여 PVE를 보정한 SUV가 정확한 값이라고 판단하기는 어려우나 PVE에 의해 감소된 SUV를 실제 값과 유사하게 보정할 수 있는 방법일 것으로 생각된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.