Characteristics of Sediment Compositions and Cs Adsorption on Marine Sediment near Wuljin Nuclear Powerplant

울진원전 근해 해저 퇴적물의 구성성분 및 방사성 Cs 흡착 특성

  • Kim Yeongkyoo (Department of Geology, Kyungpook National University) ;
  • Kim Kyung-Mi (Department of Geology, Kyungpook National University) ;
  • Jung Hee-Jin (Department of Geology, Kyungpook National University) ;
  • Kang Hee-Dong (Department of Physics, Kyungpook National University) ;
  • Kim Wan (Department of Physics, Kyungpook National University) ;
  • Doh Si-Hong (Department of Physics, Pukoung National University) ;
  • Kim Do-Sung (Division of Science Education, Daegu University)
  • Published : 2005.12.01

Abstract

Mineralogical composition, $^{137}Cs$ activity, total organic carbon (TOC), and particle size of marine sediments near Wuljin Nuclear Powerplant were analyzed and the relationships among those components were investigated. The particle sizes of sediments were equivalent to sand size and in the range of $-0.48\~3.6\;Md\phi$. TOC contents and $^{137}Cs$ activities were in the range of $0.06\~1.75\%$ and minimum detectable activity (MDA) $\~4.0Bq/kg-dry$ with the average value of $1.15{\pm}0.62$ Bq/kg-dry, respectively. The sediments in study area were characterized by large particle size and small TOC contents, and $^{137}Cs$ activity compared with other marine sediments. The main mineral components were quartz and feldspar (albite, microcline, and small amount of orthoclase) with small amount of pyroxene, calcite, hornblende. Minerals with $10{\AA}$ XRD peak (mainly biotite) and chlorite were also identified. Among those minerals, biotite shows the linear relationship with $^{137}Cs$ content probably due to the frayed edge site (FES) on biotite or small amount of mixed illite. However, TOC content shows most linear relationship with $^{137}Cs$ content because no significant amount of clay minerals, which can adsorb significant amount of Cs, were observed in the study area, indicating that the distribution of $^{137}Cs$ in this study area was more significantly affected by the TOC content than mineral composition.

울진원자력 발전소 인근 해역의 해저 퇴적물에 대하여 광물분석과 함께 $^{137}Cs$의 농도를 분석하였고 이와 더불어 총 유기탄소(total organic carbon, TOC)의 양과 퇴적물의 입자 크기를 분석하여 퇴적물의 특성과 더불어 이들의 상관관계에 대하여 알아보았다. 퇴적물의 입자 크기는 주로 모래크기에 해당되며 $-0.48\~3.6Md\phi$의 분포를 보인다. TOC와 $^{137}Cs$의 경우 각각 $0.06\~1.75\%$와 최소검출활동도(Minimum detectable activity, MDA)$\~4.0Bq/kg-dry$의 범위로 나타나며 평균 방사능의 농도는 $1.15{\pm}0.62Bq/kg-dry$였다. 일반적으로 다른 해역의 경우보다 큰 입자와 작은 TOC의 양과 $^{137}Cs$의 농도가 특징적이다. 본 해역 퇴적물의 구성 광물은 주로 석영과 장석류들(알바이트, 미사장석, 그리고 약간의 정장석)로 구성되어 있으며 미량의 휘석, 방해석, 각섬석 등의 조암광물들과 함께 $10{\AA}$의 피크를 갖는 광물(주로 흑운모)과 일부 녹니석등의 광물들이 혼재해 분포하고 있는 것으로 나타났다. 이들 광물 중 흑운모가 가장 대표적으로 $^{137}Cs$의 분포와 상관관계를 보이고 있으며 이는 흑운모의 풍화에 따른 닮은 모서리 자리(frayed edge site, FES) 나 시료에 혼재되어 존재할 가능성이 있는 일라이트 등에 의한 결과로 판단된다. 여러 가지 퇴적물의 특성 중 $^{137}Cs$의 분포와 가장 밀접한 양상을 보이는 것은 TOC의 농도로 이것은 본 해역에서 Cs을 강하게 흡착할 만한 광물이 존재하기 않기 때문이며, 따라서 $^{137}Cs$의 분포는 광물분포 보다는 TOC의 함량에 더 큰 영향을 받고 있음을 보여준다.

Keywords

References

  1. Baskaran, M., Asbill, S., Schwantes, J., Santschi, K, Champ, M.A., Brooks, J.M., Adkinson, D. and Makeyev, V (2000) Concentrations of $^{137}Cs$, $^{239,240}Pu$ and $^{210}Pb$ in sediment samples from the Pechora Sea and biological samples from the Ob, Yenisey Rivers and Kara Sea. Mar. Poll. Bull., 40, 830-838 https://doi.org/10.1016/S0025-326X(00)00078-3
  2. Bradbury, M.H. and Baeyens, B. (2000) A generalised sorption model for the concentration dependent uptake of caesium by argillaceous rocks. J. Contam. Hydrol., 42, 141-163 https://doi.org/10.1016/S0169-7722(99)00094-7
  3. Brouwer, E., Baeyens, B., Maes, A. and Cremers, A. (1983) Cesium and rubidium ion equilibria in Mite clay. J. Phys. Chem., 87, 1213-1219 https://doi.org/10.1021/j100230a024
  4. Chung, EH. (1974) Quantitative interpretation of X-ray diffraction patterns of mixtures - I. Mztrix flushing method for quantitative multicomponent analysis. Journal of Applied Crystallography, 7, 516-531
  5. Commans, R.N.J., Haller, M. and de Prefer, P. (1991) Kinetics of cesium sorption on illite. Geochim. Cosmochim. Acta, 56, 1157-1164 https://doi.org/10.1016/0016-7037(92)90053-L
  6. De Preter, R (1990) Radiocesium retention in the aquatic, terrestrial and urban environment: A quantitative and unifying analysis. Ph.D. dissertation, Univ. Leuven
  7. Dumat, C. and Staunton, S. (1999) Reduced adsorption of caesium on clay minerals caused by various humic substances. J. Environ. Radioactivity, 46, 187-200 https://doi.org/10.1016/S0265-931X(98)00125-8
  8. Dumat, C, Quiquampoix, H. and Staunton, S. (2000) Adsorption of cesium by synthetic clay-organic matter complexes: Effect of the nature of organic polymers. Environ. Sci. Technol., 34., 2985-2989 https://doi.org/10.1021/es990657o
  9. Eberl, D.D. (1980) Alkali cation selectivity and fixation by clay mienrals. Clays Clay Mineral, 28, 161-172 https://doi.org/10.1346/CCMN.1980.0280301
  10. Francis, C.W. and Brinkeley, ES. (1976) Prefererntial adsorption of 137Cs to micaceous minerals in contaminated freshwater sediment. Nature, 260, 511-513 https://doi.org/10.1038/260511a0
  11. Hillier, S. (2000) Accurate quantitative analysis of clay and other minerals in sandstones by XRD: comparison of a Rietveld and a reference intensity ratio (RIR) method and the importance of sample preparation. Clay Minerals, 35, 291-302 https://doi.org/10.1180/000985500546666
  12. Hong, G.H., Lee, S.H., Kim, S.H. and Chung, CS. (1999) Sedimentary fluxes of $^{90}Sr, ^{137}Cs, ^{239+240}Pu$ and $^{210}Pb$ in the East Sea (Sea of Japan). Sci. Total Environ., 237/238, 225-240 https://doi.org/10.1016/S0048-9697(99)00138-2
  13. Johnson-Pyrtle, A., Scott, M.R., Laing, T.E. and Smol, J.P. (2000) $^{137}Cs$ distribution and geochemistry of Lena River(Siberia) drainage basin lake sediments. Sci. Total Environ., 255, 145-159 https://doi.org/10.1016/S0048-9697(00)00466-6
  14. Johnson-Pyrtle, A. and Scott, M.R. (2001) Distribution of $^{137}Cs$ in the Lena River Estuary-Laptev Sea System. Mar. Poll. Bull, 42, 10, 912-926 https://doi.org/10.1016/S0025-326X(00)00237-X
  15. Keil, R.G., Tsamakis, E., Fuh, C.B., Giddings, J.C. and Hedges, J.I. (1994) Mineralogical and textural controls on the organic composition of coastal marine sediments: hydrodynamic separation using SPLITT-frac-tion. Geochim. Cosmochim. Acta, 58, 879-893 https://doi.org/10.1016/0016-7037(94)90512-6
  16. Kerpen, W. (1986) Bioavailability of the radionuclides cesium-137, cobalt-60, manganese-54 and strontium-85 in various soils as a function of their soil properties. Methods applied and first results. In Application of Distribution Coefficients to Radiological Assessment Models (ed. T.H. Sibley and C. Mytte-naere). Elsevier, 322-332
  17. Kim, Y., Cho, S., Kang, H.D., Kim, W, Lee, H.R., Doh, S.H., Kim, K, Yun, S.G., Kim, D.S. and Jeong, G.Y. (2006) Radiocesium reaction with illite and organic matter in marine sediment. Mar. Poll. Bull., in press
  18. Lee, M.H. and Lee, C.W. (2000) Association of fallout-derived $^{137}Cs,\;^{90}Sr$ and $^{239,240}Pu$ with natural organic substances in soils. J. Environ. Radioactivity, 47, 253-262 https://doi.org/10.1016/S0265-931X(99)00033-8
  19. Nikolova, I., Johanson, K.I. and Clegg. S. (2000) The accumulation of 137Cs in the biological compartment of forest soils. J. Environ. Radioactivity, 47, 319-326 https://doi.org/10.1016/S0265-931X(99)00048-X
  20. Poinssot C, Baeyens, B. and Bradbury, M.H. (1999) Experimental and modelling studies of Cs sorption on illite. Geochim. Cosmochim. Acta, 63. 3217-3227 https://doi.org/10.1016/S0016-7037(99)00246-X
  21. Rigol, A., Vidal, M. and Rauret, G. (2002) Overview of the effect of organic matter on soil-radicaesium interaction: implications in root uptake. J. Environ. Radioactivity, 58, 191-216 https://doi.org/10.1016/S0265-931X(01)00066-2
  22. Sawhney, B.L. (1970) Potassium and cesium ion selectivity in relation to clay mineral structure. Clays Clay Mineral, 18, 47-52 https://doi.org/10.1346/CCMN.1970.0180106
  23. Sawhney, B.L. (1972) Selective adsorption and fixation of cations by clay mienrals: A review. Clays Clay Mineral, 20, 93-100 https://doi.org/10.1346/CCMN.1972.0200208
  24. Staunton, S. and Roubaud, M. (1997) Adsorption of $^{137}Cs$ on montmorillonite and illite: Effect of charge compensating cation, ionic strength, concentration of Cs, K and fulvic acid. Clays Clay Mineral, 45, 251-260 https://doi.org/10.1346/CCMN.1997.0450213
  25. Takenaka, C, Onda, Y. and Hamajima, Y. (1998) Distribution of cesium-137 in Japanese forest soils: correlation with the contents of organic carbon. Sci. Total Environ., 222, 193-199 https://doi.org/10.1016/S0048-9697(98)00305-2
  26. Tamura, T. and Jacobs. (1960) Structural implications in cesium sorption. Health Phys., 2, 391-398 https://doi.org/10.1097/00004032-195910000-00009