DOI QR코드

DOI QR Code

Sorption Efficiency of the Bamboo Charcoal to Remove the Cesium in the Contaminated Water System

오염수계 내 세슘 제거를 위한 대나무 활성탄의 흡착효율 규명

  • Ahn, Joungpil (Department of Earth Environmental Sciences, Pukyong National University) ;
  • Lee, Minhee (Department of Earth Environmental Sciences, Pukyong National University)
  • 안정필 (부경대학교 지구환경과학과) ;
  • 이민희 (부경대학교 지구환경과학과)
  • Received : 2018.03.12
  • Accepted : 2018.04.04
  • Published : 2018.04.28

Abstract

The cesium (Cs) removal from the contaminated water system has been considered to be difficult because the cesium likes to exist as soluble phases such as ion and complexes than the solid in water system. Many researches have focused on developing the breakthrough adsorbent to increase the cesium removal efficiency in water. In this study, the laboratory scale experiments were performed to investigate the feasibility of the adsorption process using the bamboo charcoal for the Cs contaminated water system. The Cs removal efficiency of the bamboo charcoal were measured and the optimal adsorption conditions were determined by the adsorption batch experiments. Total 5 types of commercialized bamboo charcoals in Korea were used to identify their surface properties from SEM-EDS and XRD analyses and 3 types of bamboo charcoals having large specific surface areas were used for the adsorption batch experiment. The batch experiments to calculate the Cs removal efficiency were performed at conditions of various Cs concentration (0.01 - 10 mg/L), pH (3 - 11), temperature ($5-30^{\circ}C$), and adsorption time (10 - 120 min.). Experimental results were fitted to the Langmuir adsorption isotherm curve and their adsorption constants were determined to understand the adsorption properties of bamboo charcoal for Cs contaminated water system. From results of SEM-EDS analyses, the surfaces of bamboo charcoal particles were composed of typical fiber structures having various pores and dense lamella structures in supporting major adsorption spaces for Cs. From results of adsorption batch experiments, the Cs-133 removal efficiency of C type bamboo charcoal was the highest among those of 3 bamboo charcoal types and it was higher than 75 % (maximum of 82 %) even when the initial Cs concentration in water was lower than 1.0 mg/L, suggesting that the adsorption process using the bamboo charcoal has a great potential to remove Cs from the genuine Cs contaminated water, of which Cs concentration is low (< 1.0 mg/L) in general. The high Cs removal efficiency of bamboo charcoal was maintained in a relatively wide range of temperatures and pHs, supporting that the usage of the bamboo charcoal is feasible for various types of water. Experimental results were similar to the Langmuir adsorption model and the maximum amount of Cs adsorption (qm:mg/g) was 63.4 mg/g, which was higher than those of commercialized adsorbents used in previous studies. The surface coverage (${\theta}$) of bamboo charcoal was also maintained in low when the Cs concentration in water was < 1.0 mg/L, investigating that the Cs contaminated water can be remediated up with a small amount of bamboo charcoal.

세슘은 물속에서 고상보다는 이온이나 착염 등 용존 형태로 존재하는 특성이 강하여, 오염 수계로부터 세슘 제거가 어려운 것으로 알려져 있다. 최근 많은 연구들이 수계 내에서 세슘의 제거효율이 높은 흡착제를 개발하는데 집중하고 있다. 본 연구에서는 대나무 활성탄을 흡착제로 사용하여 수계 내에 존재하는 세슘을 효과적으로 제거하는 실내실험을 실시하였다. 수용액으로부터 대나무 활성탄의 세슘 제거효율을 측정하고, 최적의 세슘 제거능을 가지는 흡착 조건을 도출하고자 다양한 조건에서 흡착 배치실험을 수행하였다. 국내에서 유통되고 있는 5 종류의 대나무 활성탄의 표면 특성을 SEM-EDS와 XRD 분석으로 규명하였으며, 이 중에서 비표면적이 큰 3 종류의 대나무 활성탄을 대상으로 세슘 제거 배치실험을 실시하였다. 다양한 초기 세슘 농도를 가지는 인공수(0.01~10 mg/L 범위)를 대상으로 대나무 활성탄에 의한 수용액 내 세슘 제거량을 측정하여 제거효율을 계산하였고, 두 종류의 흡착 등온식들을 흡착 배치실험 결과에 대응시켜 흡착 상수값을 결정함으로서, 대나무 활성탄의 세슘 흡착 특성을 규명하였다. FE-SEM 분석 결과, 대나무 활성탄은 표면이 다수의 기공을 포함하는 대나무의 섬유질 조직을 그대로 유지하는 입자들로 구성되어, 이들 섬유질 조직 내 다양한 형태의 기공들과 엽상조직 표면들이 주요 세슘 흡착공간인 것으로 밝혀졌다. 흡착 배치실험 결과, C type 대나무 활성탄의 세슘 제거효율이 가장 높았는데, 특히 수용액의 세슘 초기 농도가 1.0 mg/L 이하인 경우에도 75 % 이상(최고 82 %)을 나타내어, 원전사고 등에 의해 오염된 현장 지하수나 지표수(해수 포함)의 세슘농도가 대부분 1.0 mg/L 이하임을 고려하면, 실제 오염수 정화 가능성이 높을 것으로 밝혀졌다. 수용액의 온도는 $5-15^{\circ}C$ 범위, pH는 3-11 범위에서 높은 세슘 제거효율이 일정하게 유지되는 것으로 나타나 다양한 오염수에 적용할 수 있을 것으로 판단되었다. 흡착 배치실험 결과는 Langmuir 흡착모델과 유사하였으며, C type 대나무 활성탄의 최대흡착농도($q_m:mg/g$)값은 63.4 mg/g으로 기존의 상용화된 흡착제 값보다 높았고, 수용액의 초기 세슘 농도가 1.0 mg/L이하인 경우 표면흡착률(surface coverage) 값도 낮게 유지되어, 적은 양의 세슘으로 오염된 수계를 효과적으로 정화할 수 있음을 입증하였다.

Keywords

References

  1. Acharya, J., Sahu, J.N., Mohanty, C.R., Meikap, B.C. (2009) Removal of lead (II) from wastewater by activated carbon developed from Tamarind wood by zinc chloride activation. Chem. Eng. J., v.149, p.249-262. https://doi.org/10.1016/j.cej.2008.10.029
  2. Adachi, K., Kajino, M., Zaizen, Y. and Igarashi, Y. (2013) Emission of spherical cesium bearing particles from an early stage of the Fukushima unclear accident. Sci. Rep., v.3, p.2554. https://doi.org/10.1038/srep02554
  3. Avery, S.V. (1996) Fate of cesium in the environment : Distribution between the abiotic and biotic components of aquatic and terrestrial ecosystem. J. Environ. Radioact., v.30, p.139-171. https://doi.org/10.1016/0265-931X(96)89276-9
  4. Buesseler, K.O. (2014) Fukushima and ocean radioactivity. Oceanography, v.27, p.92-105.
  5. Butterman, W.C., Brooks, W.E. and Reese, R.G. (2004) Mineral Commodity Profile: Cesium. United States Geological Survey, Open-File Report 2004-1432 (by http://pubs.usgs.gov/of/2004/1432/2004-1432.pdf).
  6. Ding, D., Zhang, Z., Chen, R. and Cai, T. (2017) Selective removal of cesium by ammonium molybdophosphatepolyacrylonitrile bead and membrane. J. Hazard. Mater., v.324, p.753-761. https://doi.org/10.1016/j.jhazmat.2016.11.054
  7. Ding, S., Yang, Y., Li, C., Huang, H. and Hou, L. (2016) The effects of organic fouling on the removal of radionuclides by reverse osmosis membranes. Water Res., v.95, p.174-184. https://doi.org/10.1016/j.watres.2016.03.028
  8. Gad, S.C. and Pham, T. (2014) Cesium, Encyclopedia of Toxicology (3rd ed.), Elsevier, 776-778 (by https:// doi.org/10.1016/B978-0-12-386454-3.00827-7).
  9. Hashimoto, S., Matsuura, T., Nanko, K., Linkow, I., shaw, G. and Kaneko, S. (2013) Predicted spatio-temporal dynamics of radioactive cesium deposited onto forests following the Fukushima unclear accident. Sci. Rep., v.3, p.2564. https://doi.org/10.1038/srep02564
  10. Ho, Y.S., Huang, C.T. and Huang, H.W. (2002) Equilibrium sorption isotherm for metal ions on tree fern. Process Biochem., v.37, p.1421-1430. https://doi.org/10.1016/S0032-9592(02)00036-5
  11. Kato, H., Onda, Y. and Teramage, M. (2012) Depth distribution of $^{137}Cs$, $^{134}Cs$, and $^{131}I$ in soil profile after Fukushima Dai-ichi Nuclear Power Plant Accident. J. Environ. Radioact., v.111, p.59-64. https://doi.org/10.1016/j.jenvrad.2011.10.003
  12. Khandaker, S., Kuba, T., Kamida, S. and Uchikawa, Y. (2017) Adsorption of cesium from aqueous solution by raw and concentrated nitric acid-modified bamboo charcoal. J. Environ. Chem. Eng., v.5, p. 1456-1464. https://doi.org/10.1016/j.jece.2017.02.014
  13. Khandaker, S., Toyohara, Y., Kamida, S., Kuba, T. (2018) Adsorptive removal of cesium from aqueous solution using oxidized bamboo charcoal. Water Resour. Ind., v.19, p.35-46. https://doi.org/10.1016/j.wri.2018.01.001
  14. KHNP (Korea Hydro & Nuclear Power Co.) (2016) 2015 Nuclear Power Generation. Annual Report.
  15. Kitamura, A., Yamaguchi, M., Kurikami, H., Yui, M. and Onishi, Y. (2014) Predicting sediment and cesium-137 discharge from catchments in eastern Fukushima. Anthropocene, v.5, p.22-31. https://doi.org/10.1016/j.ancene.2014.07.001
  16. Lai, Y.C., Chang, Y.R., Chen, M.L., Lo, Y.K., Lai, J.Y. and Lee, D.J. (2016) Poly(vinyl alcohol) and alginate crosslinked matrix with immobilized Prussian blue and ion exchange resin for cesium removal from waters. Bioresour. Technol., v.214, p.192-198. https://doi.org/10.1016/j.biortech.2016.04.096
  17. Lalhruaitluanga, H., Jayaram, K., Prasad, M.N.V. and Kumar, K.K. (2010) Lead (II) adsorption from aqueous solutions by raw and activated charcoals of Melocanna baccifera Roxburgh (bamboo) - A comparative study. J. Hazard. Mater., v.175, p.311-318. https://doi.org/10.1016/j.jhazmat.2009.10.005
  18. Lee, K.Y., Kim, K.W., Park, M., Kim, J., Oh, M., Lee, E.H., Chung, D.Y. and Moon, J.K. (2016) Novel application of nanozeolite for radioactive cesium removal from high-salt wastewater. Water Res., v.95, p.134-141. https://doi.org/10.1016/j.watres.2016.02.052
  19. Montana, M., Camacho, A., Serrano, I., Devesa, R., Matia, L. and Valles, I. (2013) Removal of radionuclides in drinking water by membrane treatment using ultrafiltration, reverse osmosis and electrodialysis reversal. J. Environ. Radioact., v.125, p.86-92. https://doi.org/10.1016/j.jenvrad.2013.01.010
  20. Moon, J., Chung, D., Choi, W., Choi, B., Seo, B. and Lee, G. (2012) The study to establish the strategies responding to the demand of decontamination and disassembly technology for nuclear power facility. KAERI (Korea Atomic Energy Research Institute), Final Report.
  21. Nilchi, A., Atashi, H., Javid, A. H. and Saberi, R. (2007) Preparation of PAN-based adsorbers for separation of cesium and cobalt from radioactive wastes. Appl. Radiat. Isotopes, v.65, p.482-487. https://doi.org/10.1016/j.apradiso.2006.12.003
  22. Nishita, H., Dixon, D. and Larson, K.H. (1962) Accumulation of Cs and K and growth of bean plants in nutrient solution and soils. Plant and Soil, v.17, p.221-242. https://doi.org/10.1007/BF01376226
  23. Park, J. (2011) Cesium-137 in Chemistry promenade, Navercast (by navercast.naver.com/).
  24. Park, Y. T. (2007) Activated carbon technology, DongHwa Technology Publishing Co., Korea.
  25. Rao, S. V. S., Lal, K. B., narasimhan, S. V. and Ahmed, J. (1999) Copper ferrocyanide - polyurethane foam as a composite ion exchanger for removal of radioactive cesium. J. Radioanal. Nucl. Chem., v.240, p.269-276. https://doi.org/10.1007/BF02349164
  26. Tateda, Y., Tsumune, D. and Tsubono, T. (2013) Simulation of radioactive cesium transfer in the southern Fukushima coastal biota using a dynamic food chain transfer model. J. Environ. Radioact., v.124, p.1-12. https://doi.org/10.1016/j.jenvrad.2013.03.007
  27. USG (U.S. Government), NRC (Nuclear Regulatory Commission), EPA (Environmental Protection Agency), CDC (Centers for Disease Control) and ATSDR (Agency for Toxic Substances and Disease Registry) (2017) Part 1: Cesium-130 in Radionuclide and radioisotrope encyclopedia, Progressive Management Publications.
  28. Wang, S.Y., Tsan, M.H., Lo, S.F., Tsai, M. J. (2008) Effects of manufacturing conditions on the adsorption capacity of heavy metal ions by Makino bamboo charcoal. Bioresour. Technol., v.99, p. 7027-7033. https://doi.org/10.1016/j.biortech.2008.01.014
  29. WNA (World Nuclear Association) (2017) Nuclear share figures in Nuclear generation by country. Annual Report (by http://www.world-nuclear.org/infomationlibrary).
  30. Yang, H., Li, H., Zhai, J., Sun, L., Zhao, Y. and Yu, H. (2014) Magnetic prussian blue/grapheme oxide nanocomposites caged in calcium alginate microbeads for elimination of cesium ions from water and soil. Chem. Eng. J., v.246, p.10-19. https://doi.org/10.1016/j.cej.2014.02.060
  31. Zheng, H., Wang, Y., Zheng, Y., Zhang, H., Liang, S., Long, M.I. (2008) Equilibrium, kinetic and thermodynamic studies on the sorption of 4-hydroxyphenol on Crbentonite. Chem. Eng. J., v.143, p.117-123. https://doi.org/10.1016/j.cej.2007.12.022