DOI QR코드

DOI QR Code

Study of Mobility for Radionuclides in Nuclear Facility Sites

원자력 시설물 주변에서의 방사성 오염물 거동 특성 연구

  • Chang, Seeun (Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Park, JongKul (Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Um, Wooyong (Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH))
  • 장세은 (포항공과대학교 첨단원자력공학부) ;
  • 박종걸 (포항공과대학교 첨단원자력공학부) ;
  • 엄우용 (포항공과대학교 첨단원자력공학부)
  • Received : 2018.03.12
  • Accepted : 2018.04.05
  • Published : 2018.04.28

Abstract

In this study three target radionuclides ($^{60}Co$, $^{137}Cs$, and $^{125}Sb$) were reacted with solid samples collected from the nuclear facility sites to investigate their sorption and mobility behaviors for preparing unexpected nuclear accidents. The highest sorption distribution coefficients ($K_{ds}$) of target radionuclides ($^{60}Co=947mL/g$, $^{137}Cs=2105mL/g$, $^{125}Sb=81.3mL/g$) were found in topsoil layer under groundwater condition, and the $K_d$ values of three radionuclides decreased in the order of fractured rock and bedrock samples under the same groundwater condition. High $K_d$ values of $^{60}Co$ in topsoil layer and fracture rock resulted from the clay minerals present, and the $K_d$ values decreased 58-69 % under seawater condition due to high ionic strength. $^{137}Cs$ sorption was controlled by the ion exchange reaction with $K^+$ on flayed edge sites (FES) of mica. The $^{137}Cs$ sorption was the most affected by seawater (89-97 % decrease), while $^{125}Sb$ sorption was not much affected by seawater. As the results of column and batch experiments, the retardation factors (R) of $^{137}Cs$, $^{60}Co$, and $^{125}Sb$ were determined about 5400-7400, 2000-2500, and 250-415, respectively, indicating no significant transport for these radionuclides even in fractured zone with groundwater. These results suggest that even in the case of severe nuclear accident at the nuclear facilities the mobility of released radionuclides ($^{60}Co$, $^{137}Cs$, and $^{125}Sb$) can be significantly retarded by the topsoil layer and fractured rock. In addition, the results of this study will be used for the safety and environmental performance assessment of nuclear facilities.

본 연구에서는 원자력 시설물에 존재하는 핵종의 의도치 않은 유출사고를 대비하기 위해서 세 가지 대표 핵종 ($^{60}Co$, $^{137}Cs$, $^{125}Sb$)을 원자력 시설물 지역에서 채취한 시료와 반응하여 핵종들의 흡착 및 거동 특성을 조사하였다. 가장 높은 흡착계수 값들은 ($^{60}Co=947mL/g$, $^{137}Cs=2105mL/g$, $^{125}Sb=81.3mL/g$) 지하수 환경일 때 상부토층 시료에서 나타났으며, 파쇄대 > 기반암 시료의 순으로 $K_d$ 값이 감소하였다. 상부토층과 파쇄대에서 $^{60}Co$의 높은 흡착계수는 상부토층 및 파쇄대에 존재하는 점토광물에 의한 것으로 사료되며, 해수 조건에서는 높은 이온강도로 인해서 $K_d$ 값은 약 58 - 69 % 감소하였다. $^{137}Cs$의 흡착은 주로 백운모의 Flayed edge site (FES)에서 $K^+$과의 이온교환 반응에 의한 것으로 사료된다. $^{137}Cs$의 흡착이 해수 조건에서 가장 크게 영향을 받으며 (89 - 97 % 감소), $^{125}Sb$은 대표 핵종 중 해수에 의한 이온강도 변화에 가장 미미한 변화를 보였다. 칼럼 및 배치 흡착 실험 결과 파쇄대 시료 (F-1, F-2)에서 $^{137}Cs$의 지연계수 (R) 값은 약 5400 - 7400, $^{60}Co$의 경우는 약 2000 - 2500, $^{125}Sb$의 경우는 약 250 - 415의 범위를 보여주므로 대표핵종들이 파쇄대에서도 매우 낮은 거동을 보일 것으로 사료된다. 대표 핵종 $^{137}Cs$, $^{60}Co$, $^{125}Sb$들은 모두 상부토층 및 파쇄대에서 가장 높은 $K_d$ 값을 나타내므로, 원전 시설물에서 예상치 못한 중대사고가 발생하여 핵종이 환경으로 유출되더라도 상부토층 및 파쇄대 구간에서 대부분 흡착되어 이동이 상당히 지연될 것으로 예측된다. 이러한 결과는 원자력 시설물의 안전성 및 환경영향 평가 자료로 활용될 것으로 기대된다.

References

  1. Akatsu, E., Tomizawa, T. and Aratono, Y. (1974) Separation of Antimony-125 in Fission Products, J. Nucl. Sci. Technol., v.11, p.571-574. https://doi.org/10.1080/18811248.1974.9730712
  2. Anderson, K. (1983) Transport of Radionuclides in Water/ Mineral Systems, Chalmers University of Technology.
  3. Bunzl, K., Kracke, W., Schimmack, W. and Zelles, L. (1998) Forms of fallout $^{137}Cs$ and $^{239+240}Pu$ in successive horizons of a forest soil, J. Environ. Radioact., v.39, p.55-68. https://doi.org/10.1016/S0265-931X(97)00042-8
  4. Campbell, L.S. and Davies, B.E. (1995) Soil sorption of caesium modeled by the Langmuir and Freundlich isotherm equations. Appl. Geochem., v.10, p.715-723. https://doi.org/10.1016/0883-2927(95)00056-9
  5. Chang, S., Choung, S., Um, W. and Chon, C. (2013) Effects of weathering processes on radioactive cesium sorption with mineral characterization in Korean nuclear facility site. J. Miner. Soc. Korea, v.26, p.209-218. https://doi.org/10.9727/jmsk.2013.26.3.209
  6. Choi, S., Amistadi, M. and Chorover, J. (2005) Clay mineral weathering and contaminant dynamics in a caustic aqueous system, I. Wet chemistry and aging effects. Geochim. Cosmochim. Acta, v.69, 4425-4436. https://doi.org/10.1016/j.gca.2005.04.003
  7. Chorover, J., DiChiaro, M.J. and Chadwick, O.A. (1999) Structural charge and cesium retention in a chronosequence of tephritic soils. Soil Sci. Soc. Am. J, v.63, p.169-177. https://doi.org/10.2136/sssaj1999.03615995006300010024x
  8. Cornell, R.M. (1993) Adsorption of cesium on minerals: A review, J. Radioanal. Nucl. Chem., v.171, p.483-500. https://doi.org/10.1007/BF02219872
  9. Dyer, N.C. and Bechtold, T.E. (1994) Radionuclides in United States commercial nuclear power reactors, WINCO-1191.
  10. EPA (1999) Understanding variation in partition coefficient, Kd, values, Volume II: Review of Geochemistry and Available $K_d$ values for Cadmium, Cesium, Chromium, Lead, Plutonium, Radon, Strontium, Thorium, Tritium ($^3H$), and uranium, United States Environmental Protection Agency, EPA402-R-99-004B, 5.1.8.
  11. Flury, M., Czigany, S., Ghen, G. and Harsh, J.B. (2004) Cesium migration in saturated silica sand and Hanford sediments as impacted by ionic strength. J. Contam. Hydrol., v.71, p.111-126. https://doi.org/10.1016/j.jconhyd.2003.09.005
  12. Fuller, A.J., Shaw, S., Peacock, C.L., Trivedi, D., Small, J.S., Abrahamsen, L.G. and Burke, I.T. (2014) Ionic strength and pH dependent multi-site sorption of Cs onto micaceous aquifer sediment. Appl. Geochem., v.40, p.32-42. https://doi.org/10.1016/j.apgeochem.2013.10.017
  13. Hou, X.L., Fogh, C.L., Kucera, J., Andersson, K.G., Dahlgaard, H. and Nielsen, S.P. (2003) Iodine-129 and caesium-137 in Chernobyl contaminated soil and their chemical fractionation. Sci. Total Environ., v.308, p.97-109. https://doi.org/10.1016/S0048-9697(02)00546-6
  14. Huitti, T., Hakanen, M. and Lindberg, A. (1998) Sorption of Cesium on Olkiluoto Mica Gneiss, Granodiorite and Granite, POSIVA 98-11, POSIVA Oy, Helsinki.
  15. Jackson, M.L., Hseung, Y., Corey, R.B., Evans, E.J. and Heuvel, R.C.V. (1952) Weathering sequence of claysize minerals in soils and sediments: II. Chemical weathering of layer silicates. Soil Sci. Soc. Am. Proc. v.16, p.3-6. https://doi.org/10.2136/sssaj1952.03615995001600010002x
  16. Jackson, M.L. (1968) Weathering of primary and secondary minerals in soils. In: 9th International Congress of Soil Science. The International Society of Soil Science and Angus & Robertson Ltd., Adelaide, Australia, p.281-292.
  17. Kim, Y., Kirkpatrick, R.J. and Cygan, R.T. (1996) Cs-133 NMR study of cesium on the surfaces of kaolinite and illite. Geochim. Cosmochim. Acta, v.60, p.4059-4074. https://doi.org/10.1016/S0016-7037(96)00257-8
  18. Kim, Y., Cho, S., Kang, H.D., Kim, W., Lee, H.R., Doh, S.H., Kim, K., Yun, S.G., Kim, D.S. and Jeong, G.Y. (2006) Radiocesium reaction with illite and organic matter in marine sediment, Mar. Pollut. Bull., v.52, p.659-665. https://doi.org/10.1016/j.marpolbul.2005.10.017
  19. Kim, Y., Kim, K., Kand, H.D., Kim, W., Doh, S.H., Kim, D.S. and Kim, B.K. (2007) The accumulation of radiocesium in coarse marine sediment: Effects of mineralogy and organic matter, Mar. Pollut. Bull., v.54, p.1341-1350. https://doi.org/10.1016/j.marpolbul.2007.06.003
  20. Korean standards association. (2006) Test method for density of soil particles, KS F 2508.
  21. Korean standards association. (2014) Testing method for specific gravity and absorption of coarse aggregate, KS F 2503.
  22. Lintschinger, J., Michalke, B., Schulte-Hostede, S. and Schrame, P. (1998) Studies on speciation of antimony in soil contaminated by industrial activity. Int. J. Environ. Anal. Chem., v.72, p.11-25. https://doi.org/10.1080/03067319808032641
  23. Liu, C., Zachara, J.M. and Smith, S.C. (2004) A cation exchange model to describe $Cs^+$ sorption at high ionic strength in subsurface sediments at Hanford site, USA. J. Contam. Hydrol., v.68, p.217-238. https://doi.org/10.1016/S0169-7722(03)00143-8
  24. Oscarson, D.W., Watson, R.L. and Miller, H.G. (1987) The interaction of trace levels of cesium with montmorillonitic and illitic clays, Appl. Clay. Sci., v.2, p.29-39. https://doi.org/10.1016/0169-1317(87)90012-3
  25. Park, J.Y. (2010) Chemical properties and behavior of antimony in soil through comparison with arsenic. KOSEN Expert Review, p.1-8.
  26. Qin, H., Yokoyama, Y., Fan, Q., Iwatani, H., Tanaka, K., Sakaguchi, A., Kanai, Y., Zhu, J., Onda, Y. and Takahashi, Y. (2012) Investigation of cesium adsorption on soil and sediment samples from Fukushima prefecture by sequential extraction and EXAFS technique. Geochem. J., v.46, p.297-302. https://doi.org/10.2343/geochemj.2.0214
  27. Relyea, J.F., Serne, R.J. and Rai, D. (1980) Methods for determining radionuclide retardation factors. Pacific Northwest National Laboratory, PNL-3349.
  28. Sawhney, B.L. (1965) Sorption of cesium from dilute solutions. Soil Sci. Soc. Am. Proc., v.29, p.25-28. https://doi.org/10.2136/sssaj1965.03615995002900010010x
  29. Steefel, C.I., Carroll, S., Zhao, P. and Roberts, S. (2003) Cesium migration in Hanford sediment: a multisite cation exchange model based on laboratory transport experiments. J. Contam. Hydrol., v.67, p.219-246. https://doi.org/10.1016/S0169-7722(03)00033-0
  30. Tadros, T.F. (2017) Basic principles of interface science and colloid stability, 1st edition book, De Gruyter.
  31. Takeno. N. (2005) Atlas of Eh-pH diagrams. Geological survey of Japan open file report, v.419, p.102.
  32. Toride, N., Leij, F.J. and Genuchten, M. Th. (1995) The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments (version 2.0), US Salinity Laboratory, Research Report No. 137.
  33. Um, W. and Papelis, C. (2004) Metal ion sorption and desorption on zeolitized tuffs from the Nevada Test Site. Environ. Sci. Technol., v.38, p.496-502. https://doi.org/10.1021/es0343050
  34. Um, W. and Serne, R.J. (2005) Sorption and transport behavior of radionuclides in the proposed low-level radioactive waste disposal facility at the Hanford Site, Washington. Radiochim. Acta, v.93, p.57-63.
  35. Um, W., Serne, R.J., Brown, C.F. and Last, G.V. (2007) U(VI) adsorption on 200-UP-1 aquifer sediments at the Hanford Site, J. Contam. Hydrol., v.93, p.255-269. https://doi.org/10.1016/j.jconhyd.2007.03.002
  36. Vejsada, J. (2006) The uncertainties associated with the application of batch technique for distribution coefficients determination-A case study of cesium adsorption on four different bentonites. Appl. Radiat. Isot., v.64, p.1538-1548. https://doi.org/10.1016/j.apradiso.2006.05.016
  37. Zachara, J.M., Smith, S.C., Liu, C., McKinley, J.P., Serne, R.J. and Gassman, P.L. (2002) Sorption of $Cs^+$ to micaceous subsurface sediments from the Hanford Site, USA, Geochim. Cosmochim. Acta., v.66, p.193-211. https://doi.org/10.1016/S0016-7037(01)00759-1