DOI QR코드

DOI QR Code

Biogeochemical Effects of Hydrogen Gas on the Behaviors of Adsorption and Precipitation of Groundwater-Dissolved Uranium

지하수 용존 우라늄의 수착 및 침전 거동에서 수소 가스의 생지화학적 영향

  • 이승엽 (한국원자력연구원 방사성폐기물처분연구부) ;
  • 이재광 (한국원자력연구원 방사성폐기물처분연구부) ;
  • 서효진 (한국원자력연구원 방사성폐기물처분연구부) ;
  • 백민훈 (한국원자력연구원 방사성폐기물처분연구부)
  • Received : 2018.03.26
  • Accepted : 2018.04.05
  • Published : 2018.04.28

Abstract

There would be a possibility of uranium contamination around the nuclear power plants and the underground waste disposal sites, where the uranium could further migrate and diffuse to some distant places by groundwater. It is necessary to understand the biogeochemical behaviors of uranium in underground environments to effectively control the migration and diffusion of uranium. In general, various kinds of microbes are living in soils and geological media where the activity of microbes may be closely connected with the redox reaction of nuclides resulting in the changes of their solubility. We investigated the adsorption and precipitation behaviors of dissolved uranium on some solid materials using hydrogen gas as an electron donor instead of organic matters. Although the effect of hydrogen gas did not appear in a batch experiment that used granite as a solid material, there occurred a reduction of uranium concentration by 5~8% due to hydrogen in an experiment using bentonite. This result indicates that some indigenous bacteria in the bentonite that have utilized hydrogen as the electron donor affected the behavior (reduction) of uranium. In addition, the bentonite bacteria have showed their strong tolerance against a given high temperature and radioactivity of a specific waste environment, suggesting that the nuclear-biogeochemical reaction may be one of main mechanisms if the natural bentonite is used as a buffer material for the disposal site in the future.

원전 시설 주변 및 심지층 폐기물 처분장 인근 환경은 우라늄으로 오염될 가능성이 높으며, 오염된 우라늄은 지하수를 따라 먼 곳까지 이동 및 확산될 수 있다. 이러한 오염 우라늄의 이동 및 확산을 효과적으로 제어하기 위해서는 지하 환경에서 우라늄의 생지화학적 거동을 이해할 필요가 있다. 일반적으로 토양 및 지질 매체 내에 다양한 종류의 미생물이 생존하고 있으며, 이들의 활동은 핵종들의 산화 환원 반응 및 그에 따른 용해도 변화와 밀접히 연관되어 있다. 우리는 유기물 대신 수소 가스를 전자공여체로 사용하여 고체 매질에 대한 용존 우라늄의 수착 및 침전 거동을 살펴보았다. 화강암을 고체 매질로 사용한 회분식 실험에서는 수소의 영향이 관찰되지 않았으나, 벤토나이트를 사용한 조건에서는 수소의 영향으로 5~8% 우라늄 농도 감소가 관찰되었다. 이러한 결과는 벤토나이트 토착미생물이 수소를 전자공여체로 활용하여 우라늄 거동(감소)에 영향을 준 것으로 보인다. 또한, 폐기물 처분환경의 고열 및 고방사선 조건에서도 벤토나이트 토착미생물은 강한 내성을 보였으며, 이는 향후 자연산 벤토나이트가 처분장 완충재로 사용될 경우 핵종-생지화학 반응이 주요 기작 중의 하나가 될 것으로 예상된다.

Keywords

References

  1. Abedini, A., Daud, A.R., Hamid, M.A.A. and Othman, N.K. (2014) Radiolytic formation of $Fe_3O_4$ nanoparticles: influence of radiation dose on structure and magnetic properties. Plos One, v.9, p.90055. https://doi.org/10.1371/journal.pone.0090055
  2. Allard, Th. and Calas, G. (2009) Radiation effects on clay mineral properties. Applied Clay Science, v.43, p.143-149. https://doi.org/10.1016/j.clay.2008.07.032
  3. Anderson, R.T., Vrionis, H.A., Ortiz-Bernad, I., Resch, C.T., Long, P.E., Dayvault, R., Karp, K., Marutzky, S., Metzler, D.R., Peacock, A., White, D.C., Lowe, M. and Lovley, D.R. (2003) Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Applied and Environmental Microbiology, v.69, p.5884-5891. https://doi.org/10.1128/AEM.69.10.5884-5891.2003
  4. Baik, M.H., Lee, S.Y. and Shon, W.J. (2009) Retention of uranium(VI) by laumontite, a fracture-filling material of granite. Journal of Radioanalytical and Nuclear Chemistry, v.280, p.69-77. https://doi.org/10.1007/s10967-008-7446-6
  5. Barton, L.L. and Hamilton, W.A. (2007) Sulphatereducing bacteria. Cambridge University Press, 533p.
  6. Cho, D.K., Lee, S.W., Cha, J.H., Choi, J., Lee, Y. and Choi, H.J. (2008) Current status and characterization of CANDU spent fuel for geological disposal system design. Journal of the Korean Radioactive Waste Society, v.6, p.155-162.
  7. Choi, H.J., Lee, J.Y. and Choi, J.W. (2013) Development of geological disposal systems for spent fuels and highlevel radioactive wastes in Korea. Nuclear Engineering and Technology, v.45, p. 29-40. https://doi.org/10.5516/NET.06.2012.006
  8. Fredrickson, J.K., Zachara, J.M., Kennedy, D.W., Liu, C., Duff, M.C., Hunter, D.B. and Dohnalkova, A. (2002) Influence of Mn oxides on the reduction of uranium(VI) by the metal-reducing bacterium Shewanella putrefaciens. Goechimica et Cosmochimica Acta, v.66, p.3247-3262. https://doi.org/10.1016/S0016-7037(02)00928-6
  9. Hyun, S.P., Davis, J.A., Sun, K. and Hayes, K.F. (2012) Uranium(VI) reduction by iron(II) monosulfide mackinawite. Environmental Science and Technology, v.46, p.3369-3376. https://doi.org/10.1021/es203786p
  10. Ilton, E.S., Haiduc, A., Moses, C.O., Heald, S.M., Elbert, D.C. and Veblen, D.R. (2004) Heterogeneous reduction of uranyl by micas: crystal chemical and solution controls. Geochimica et Cosmochimica Acta, v.68, p.2417-2435. https://doi.org/10.1016/j.gca.2003.08.010
  11. Lee, S.Y., Baik, M.H. and Lee, Y.B. (2009a) Adsorption of uranyl ions and microscale distribution on Fe-bearing mica. Applied Clay Science, v.44, p.259-264. https://doi.org/10.1016/j.clay.2009.03.002
  12. Lee, S.Y., Baik, M.H., Lee, Y.J. and Lee, Y.B. (2009b) Adsorption of U(VI) ions on biotite from aqueous solutions. Applied Clay Science, v.46, p.255-259. https://doi.org/10.1016/j.clay.2009.08.013
  13. Lee, S.Y., Baik, M.H. and Choi, J.W. (2010) Biogenic formation and growth of uraninite ($UO_2$). Environmental Science and Technology, v.44, p.8409-8414. https://doi.org/10.1021/es101905m
  14. Lee, J.Y., Lee, S.Y., Baik, M.H. and Jeong, J.T. (2013a) Existence and characteristics of microbial cells in the bentonite to be used for a buffer material of high-level wastes. Journal of the Korean Radioactive Waste Society, v.11, p.95-102. https://doi.org/10.7733/jkrws.2013.11.2.95
  15. Lee, S.Y., Baik, M.H., Cho, H.R., Jung, E.C., Jeong, J.T., Choi, J.W., Lee, Y.B. and Lee, Y.J. (2013b) Abiotic reduction of uranium by mackinawite (FeS) biogenerated under sulfate-reducing condition. Journal of Radioanalytical and Nuclear Chemistry, v.296, p.1311-1319. https://doi.org/10.1007/s10967-013-2438-6
  16. Lee, S.Y., Lee, J.Y., Jeong, J. and Kim, K. (2014a) Characteristics for the copper exchange reaction by bentonite buffer. Journal of the Mineralogical Society of Korea, v.27, p.293-299. https://doi.org/10.9727/jmsk.2014.27.4.293
  17. Lee, S.Y., Cha, W.S. Kim, J.G., Baik, M.H., Jung, E.C., Jeong, J.T., Kim, K., Chung, S.Y. and Lee, Y.J. (2014b) Uranium(IV) remobilization under sulfate reducing conditions. Chemical Geology, v.370, p.40-48. https://doi.org/10.1016/j.chemgeo.2014.01.020
  18. Lee, S.Y., Baik, M.H., Cha, W. and Ryu, J.H. (2016a) Biogeochemical activity of indigenous bacteria in KURT deep-fracture and subsequent change of adsorption behavior characteristics of radioactive uranium. Journal of the Korean Society of Mineral and Energy Resources Engineers, v.53, p.452-462.
  19. Lee, J.K., Lee, S.Y., Jeong, J. and Baik, M.H. (2016b) Effects of gamma irradiation and Shewanella putrefaciens on the sorption of uranium by goethite. Journal of Radioanalytical and Nuclear Chemistry, v.307, p.2301-2306. https://doi.org/10.1007/s10967-015-4552-0
  20. Liger, E., Charlet, L. and Capellen, P.V. (1999) Surface catalysis of uranium(VI) reduction by iron(II). Geochimica et Cosmochimica Acta, v.63, p.2939-2955. https://doi.org/10.1016/S0016-7037(99)00265-3
  21. Lovley, D.R., Phillips, E.J.P., Gorby, Y.A. and Landa, E.R. (1991) Microbial reduction of uranium. Nature, v.350, p.413-416. https://doi.org/10.1038/350413a0
  22. Lovley, D.R. and Phillips, E.J.P. (1992) Reduction of uranium by Desulfovibrio desulfuricans. Applied Environmental Microbiology, v.58, p.850-856.
  23. Masurat, P., Eriksson, S. and Pedersen, K. (2010) Evidence of indigenous sulphate-reducing bacteria in commercial Wyoming bentonite MX-80. Applied Clay Science, v.47, p.51-57. https://doi.org/10.1016/j.clay.2008.07.002
  24. Oh, J.M., Lee, S.Y., Baik, M.H. and Roh, Y. (2010) Characterization of uranium removal and mineralization by bacteria in deep underground, Korea Atomic Energy Research Institute (KAERI). Journal of the Mineralogical Society of Korea, v.23, p.107-115.
  25. Ulrich, K.U., Singh, A., Schofield, E.J., Bargar, J.R., Veeramani, H., Sharp, J.O., Bernier-Latmani, R. and Giammar, D.E. (2008) Dissolution of biogenic and synthetic $UO_2$ under varied reducing conditions. Environmental Science and Technology, v.42, p.5600-5606. https://doi.org/10.1021/es800647u
  26. Um, W., Serne, R.J. and Krupka, K.M. (2007) Surface complexation modeling of U(VI) sorption to Hanford sediment with varying geochemical conditions. Environmental Science and Technology, v.41, p.3587-3592. https://doi.org/10.1021/es0616940
  27. Wersin, P., Hochella, M.F., Person, P., Redden, G., Leckie, J.O. and Harris, D.W. (1994) Interaction between aqueous uranium(VI) and sulfide minerals: spectroscopic evidence for sorption and reduction. Geochimica et Cosmochimica Acta, v.58, p.2829-2843. https://doi.org/10.1016/0016-7037(94)90117-1
  28. Wielinga, B., Bostick, B., Hansel, C.M., Rosenzweig, R.F. and Fendorf, S. (2000) Inhibition of bacterially promoted uranium reduction: Ferric (hydr)oxides as competitive electron acceptors. Enviromental Science and Technology, v.34, p.2190-2195. https://doi.org/10.1021/es991189l
  29. Wu, L., Beauregard, Y., Qin, Z., Rohani, S. and Shoesmith, D.W. (2012) A model for the influence of steel corrosion products on nuclear fuel corrosion under permanent disposal conditions. Corrosion Science, v.61, p.83-91. https://doi.org/10.1016/j.corsci.2012.04.027