• Title/Summary/Keyword: 발파시험

Search Result 227, Processing Time 0.019 seconds

Estimation of Excavation Difficulty in Rock Mass (토공작업시 암반 굴착난이도 판정기준)

  • 유병옥;김경석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06b
    • /
    • pp.85-115
    • /
    • 2003
  • 토공작업시 굴착난이도(토층, 리핑암, 발파암)를 판정하는 기준으로는 암반의 강도, 풍화정도, 불연속면 간격과 같은 여러 가지 암반의 공학적 특성 및 지반의 탄성파 속도 등이 사용된다. 그러나 실제 토공 작업시의 굴착난이도 평가는 탄성파 탐사와 같은 암석ㆍ암반의 정량적인 판단기준에 근거하지 않고 단지 현장 기술자들의 육안관찰에 의존하여 굴착난이도를 구분하고 있는 실정이다. 본 논문은 실내시험 및 현장시험, 현장굴착난이도 평가 및 탄성파탐사 등을 실시하여 여러 암석에 대한 강도특성을 파악한 것을 근거로 현장에서 사용할 수 있는 암반굴착난이도 평가법의 Checklist를 제안하였다.

  • PDF

Study on Optimization of Blast Design for Improving Fragmentation in Jeju Basalt Rock Area (제주도 현무암에서 파쇄도 향상을 위한 최적 발파 설계 연구)

  • Yang, Hyung-Sik;Kim, Nam-Soo;Jang, Hyong-Doo;Kim, Won-Beom;Ko, Young-Hun;Kim, Seung-Jun;Kim, Jeong-Gyu;Moon, Hee-Sook
    • Explosives and Blasting
    • /
    • v.29 no.2
    • /
    • pp.89-99
    • /
    • 2011
  • Recently on Jeju island there has been a lot of development and construction. However random distribution of porous basalt and clinker seam generated from volcanic activities often interrupt and greatly reduce efficiency of blasting necessary for construction. Three test blasts were operated to solve the inefficiency problem and results indicated that a powder factor of 0.40~0.45 $kg/cm^3$ is necessary to increase the efficiency of blasting. Also the blasting scheme should be concerned whether clinker seams exists in excavation levels or not.

화약산업의 발파안전 대책 - 소음진동 및 안전거리 설정을 중심으로 -

  • 안명석
    • Journal of KSNVE
    • /
    • v.2 no.1
    • /
    • pp.15-20
    • /
    • 1992
  • (1) 화약발파작업을 시작하기 전에는 필히 시험발파, 안전진단을 통해 공해 및 안전사고 발생요소들을 면밀히 분석하고 파악하여 발파공법, 천공공법, 사용폭약 의 종류, 사용약량 등을 결정하고 이에 따른 적합한 안전거리의 설정, 안전덮게, 안전망의 사용, 필요시 휀스철망 설치등의 안전조치를 완벽히 취해야겠다. 또한 현행 소음진동규제법에 의하면 폭약 사용시 7일전 신고의무 규정을 우리나라의 공사 현실을 감안해 볼 재검토 할 필요가 있다. (2) 선진국의 발파진동 기준을 우리나라 의 경우와 비교 분석해 볼때 우리나라의 경우 발파진동 안전기준은 도심지에는 대체 로 0.5cm/sec가 적당하고 고주택, 아파트 등이 밀집된 지역이나 건물지반이 특히 약한 곳은 0.2cm/sec을 적용함이 타당하다고 판단된다. 또한 도심지에서의 안전발파 를 위한 터널공법으로는 주변 생활환경 소음진동방지를 위한 심발법으로 브이 컷법 을, 여굴방지와 미려시공 등 공사시 안전사고, 소음진동을 방지하기 위한 공법으로는 슬러리, 파이 넥스 폭약을 이용한 정밀면 발파법을 권장한다. (3) 연화발사시 안전 거리를 3.deg. 기준 최소반경 129m, 12" 기준 최고 반경 200m로 설정하여야 겠다. 또한 연화발사시 발생하는 폭발 소음은 80 - 100dB 정도로써 대량으로 장시간 발사 시는 청력장해 등의 피해가 발생할 수 있으나 우리나라의 경우는 발사 총 시간이 대체로 30분을 초과하지 않으므로 관람자나 일반인들이 소음피해를 호소할 수준은 아니라고 결론지을 수 있다.수 있다.

  • PDF

A Study on the Blasting Dynamic Analysis Using Superposition Modeling Data (중첩모델링자료를 활용한 발파 동해석 기법에 관한 연구)

  • Park, Ji-Woo;Kang, Choo-Won;Go, Jin-Seok;Jang, Ho-Min
    • Tunnel and Underground Space
    • /
    • v.18 no.4
    • /
    • pp.280-288
    • /
    • 2008
  • Since blast-induced vibration may cause serious problem to the rock mass as well as the nearby structures, the prediction of blast-induced vibration and the stability evaluation must be performed before blasting activities. Dynamic analysis using measurement vibration waveform which is measured by bore hole blasting or test blasting has been increased recently in order to analyze the effect of the blast-induced vibration. The waveform made by bore hole blasting has the similar vibration level and duration to those the waveform of sing hole has. However, there can be a little difference in attenuation characteristics with the blast induced vibration waveform in the field. Through the superposition modeling of single hole waveform, I obtained the vibration waveform on the blasting condition changes and conducted dynamic analysis using this waveform in this study.

A fundamental study on the automation of tunnel blasting design using a machine learning model (머신러닝을 이용한 터널발파설계 자동화를 위한 기초연구)

  • Kim, Yangkyun;Lee, Je-Kyum;Lee, Sean Seungwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.5
    • /
    • pp.431-449
    • /
    • 2022
  • As many tunnels generally have been constructed, various experiences and techniques have been accumulated for tunnel design as well as tunnel construction. Hence, there are not a few cases that, for some usual tunnel design works, it is sufficient to perform the design by only modifying or supplementing previous similar design cases unless a tunnel has a unique structure or in geological conditions. In particular, for a tunnel blast design, it is reasonable to refer to previous similar design cases because the blast design in the stage of design is a preliminary design, considering that it is general to perform additional blast design through test blasts prior to the start of tunnel excavation. Meanwhile, entering the industry 4.0 era, artificial intelligence (AI) of which availability is surging across whole industry sector is broadly utilized to tunnel and blasting. For a drill and blast tunnel, AI is mainly applied for the estimation of blast vibration and rock mass classification, etc. however, there are few cases where it is applied to blast pattern design. Thus, this study attempts to automate tunnel blast design by means of machine learning, a branch of artificial intelligence. For this, the data related to a blast design was collected from 25 tunnel design reports for learning as well as 2 additional reports for the test, and from which 4 design parameters, i.e., rock mass class, road type and cross sectional area of upper section as well as bench section as input data as well as16 design elements, i.e., blast cut type, specific charge, the number of drill holes, and spacing and burden for each blast hole group, etc. as output. Based on this design data, three machine learning models, i.e., XGBoost, ANN, SVM, were tested and XGBoost was chosen as the best model and the results show a generally similar trend to an actual design when assumed design parameters were input. It is not enough yet to perform the whole blast design using the results from this study, however, it is planned that additional studies will be carried out to make it possible to put it to practical use after collecting more sufficient blast design data and supplementing detailed machine learning processes.

A case study on variation of the coefficients K and n with proceeding of blasting works at the felsite zone (규장암지역에서 발파공사중 K 및 n의 변화에 대한 연구)

  • 안명석;박종남
    • Explosives and Blasting
    • /
    • v.16 no.4
    • /
    • pp.29-39
    • /
    • 1998
  • A case study was made on in site vibration velocity data collected for two months in the construction area of the Daeduck cultural City Hall. Taegu The geology over the area shows distributions of weathered and some crack developed hornfels of mud-shale in the upper part, underlain by less weathered and hard compact quartzite. For the period of 2 months of blasting event, the vibration velocities were measured and these data were analysed for K and n for three different period the test period, first month and second month. The data for the test period show that K and n are 2464 and 1.621 with the cube root method, and 7154 and 1.791 with the sqare root one, respectively. The data for the first month collected mostly from blasting in the upper hornfels show that K and n are 1668 and 1,492 for the cube root and 1219 and 1,366 for the square root, respectively. Such a significant decrease in the K and n values from the test period through the first month for the weathered and comparatively well crack developed rocks hard and compact lower quartzite, may be due to difference in attenuation of waves propagating through physically different media. Therefore, for more effective safety design and blasting, it seems that it may be n to adopt appropriate K and n values, with getting lower step by step while proceeding the operation. In the meantime, the attenuation rate of K and n together with SD cross point for the cube and square root methods indicates that the cube root one appears to be more applicable than the square root for this area with limited distance(The maximum is 100m).

  • PDF

Control Effect of Vibration According to the Application Ratio of Electronic Detonator for Tunnel Blasting (터널발파시 전자뇌관 적용 비율에 따른 진동저감 효과 연구)

  • JongWoo Lee;TaeHyun Hwang;NamSoo Kim;KangIl Lee
    • Explosives and Blasting
    • /
    • v.42 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • Through existing research and construction cases during tunnel blasting, the electronic blasting method is reported to be more effective in reducing blast vibration than the normal blasting method. However, due to the high price of electronic detonators, they are only used in some blasting sites where security objects are located nearby. Accordingly, this study performed tunnel blasting tests by adjusting the ratio of electronic and non-electronic detonators. And through the research results, the reduction effect of blasting vibration according to the detonator ratio was evaluated. The research results showed that the reduction effect of blast vibration was greatest when 100% electronic detonator was applied. In addition, when more than 52% of the electronic detonator was applied, it was found that the reduction effect was similar to the reduction effect when 100% of the detonator was used.

A study of Physical Characteristic on Machun Building Stone (마천석재의 물리적 특성에 관한 연구)

  • 양해승;김종인;최한규
    • Explosives and Blasting
    • /
    • v.22 no.2
    • /
    • pp.45-54
    • /
    • 2004
  • Samples examined in this study were acquired from Machun building stone, Dukwoo building stone in Kyungnam province The aim of this study is to examine physical features of Machun rock from specific gravity, porosity. absorption, point load test. triaxial compressive test, Brazilian test, petrology test, and chemical analysis test.

A Case Study of Application of the Bulk Emulite In Hard Rock Tunnel (터널용 벌크 폭약(New Emulite 1000)의 국내 경암 터널 시공사례 및 향후 발전 방향에 관한 연구)

  • 조영곤;이상돈;김희도
    • Explosives and Blasting
    • /
    • v.19 no.3
    • /
    • pp.39-47
    • /
    • 2001
  • Bulk-Emulsion system은 미주나 서구 유럽 등지의 발파분야에 있어 선구적인 역할을 수행하여 왔던 나라에서는 이미 보편화된 시스템으로 ANFO 다음으로 노천이나 터널 굴진에 널리 적용되고 있다. Bulk-Emulsion system은 제조, 저장, 운반 및 사용에 있어서 극히 안전하고 장전밀도를 증가시켜 효과적인 파쇄와 굴진률 향상을 기대할 수 있으며 발파 후가스가 매우 양호한것을 비롯하여 기계화 장전에 따른 시공 능률 향상과 작업 안전성 강화 등 많은 장점을 가지고 있다. 본 연구에서는 고속도로 터널 현장에 국내 최초로 터널용 Bulk-Emulsion system을 이용하여 총 15회에 걸쳐 시험발파를 실시하였으며 이 결과를 토대로 하여 Bulk-Emulsion system 적용에 따른 효과와 문제점을 알아보고자 하였다.

  • PDF