• Title/Summary/Keyword: 발진성능

Search Result 174, Processing Time 0.03 seconds

A Study on Adaptive Interference Canceller of Wireless Repeater for Wideband Code Division Multiple Access System (WCDMA시스템 무선 중계기의 적응간섭제거기에 관한 연구)

  • Han, Yong-Sik;Yang, Woon-Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.7
    • /
    • pp.1321-1327
    • /
    • 2009
  • In this paper, as the mobile communication service is widely used and the demand for wireless repeaters is rapidly increasing because of the easiness of extending service areas. But a wireless repeater has a problem the oscillation due to feedback signal. We proposed a new hybrid interference canceller using the adaptive filter with CMA(Constant Modulus Algorithm)-Grouped LMS(Least Mean Square) algorithm in the adaptive interference canceller. The proposed interference canceller has better channel adaptive performance and a lower MSE(Mean Square Error) than conventional structure because it uses the cancellation method of Grouped LMS algorithm. The proposed detector uses the LMS algorithms with two different step size to reduce mean square error and to obtain fast convergence. This structure reduces the number of iterations for the same MSE performance and hardware complexity compared to conventional nonlinear interference canceller.

Asynchronous Ranging Method using Estimated Frequency Differences in Wireless Sensor Networks (무선 센서망에서의 주파수 차이 추정 비동기 Ranging 방식)

  • Nam, Yoon-Seok;Huh, Jae-Doo
    • The KIPS Transactions:PartC
    • /
    • v.15C no.1
    • /
    • pp.31-36
    • /
    • 2008
  • The clock frequency difference of sensor nodes is one of main parameters in TOF estimation and affect to degrade ranging algorithms to estimate positions of mobile nodes in wireless sensor networks. The specification of IEEE802.15.4a describes asynchronous TWR and SDS-TWR insensitive to frequency difference without any additional network synchronization. But the TWR and SDS-TWR can not eliminate sufficiently the effect of frequency difference of node pair, packet processing delay and its difference. Especially use of low cost oscillator with wide range offset, sensor node with different hardware and software can make the positioning errors worse. We propose an estimation method of frequency differences, and apply the measured frequency differences to TWR and SDS-TWR. We evaluate the performance of the proposed algorithm with simulation, and make certain that the proposed method enhances the performance of existing algorithms with positioning errors less than 25 cm.

Design and Implementation of an Analog Predistorter for M/W Repeaters (M/W 중계기용 아날로그 Predistorter의 설계 및 구현)

  • Kang, Sang-Gee;Ryu, Joon-Gyu;Chang, Dae-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.1
    • /
    • pp.33-38
    • /
    • 2008
  • The probability of an oscillation occurrence in M/W frequency conversion repeaters is low on account of the different operating frequency of the input and output signals. The probability of interference caused by the M/W frequency conversion repeaters to other systems is also low because the systems are used in the line-of-sight. Therefore M/W frequency conversion repeaters are generally used for retransmitting the signal received from base station to the islands. This paper describes the design and implementation of analog predistorter for M/W frequency conversion repeaters in mobile communications. The M/W repeaters convert IF frequency of 1010+/-10MHz to RF frequency of 11GHz. A predistorter can be designed for the M/W repeater operating in either IF or M/W frequency. In this paper IF predistorter operated in 1010MHz is designed and implemented because a M/W predistorter operated in 11GHz is difficult to implement. The IF predistorter can linearize RF modules in the repeater followed by IF stages. The performance test results show that the implemented analog predistorter improves ACPR of 10dB at the output power of 25dBm with the signal frequency of 10.805GHz.

Introduction to System Modeling and Verification of Digital Phase-Locked Loop (디지털 위상고정루프의 시스템 모델링 및 검증 방법 소개)

  • Shinwoong, Kim
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.577-583
    • /
    • 2022
  • Verilog-HDL-based modeling can be performed to confirm the fast operation characteristics after setting the design parameters of each block considering the stability of the system by performing linear phase-domain modeling on the phase-locked loop. This paper proposed Verilog-HDL modeling including DCO noise and DTC nonlinear characteristic. After completing the modeling, the time-domain transient simulation can be performed to check the feasibility and the functionality of the proposed PLL system, then the phase noise result from the system design based on the functional model can be verified comparing with the ideal phase noise graph. As a result of the comparison of simulation time (6 us), the Verilog-HDL-based modeling method (1.43 second) showed 484 times faster than the analog transistor level design (692 second) implemented by TSMC 0.18-㎛.

Performance Evaluation of a W-Band Waveguide Noise Measurement System for Calibrating Noise Sources (잡음원 교정용 W-대역 도파관 잡음 측정 시스템의 성능 평가)

  • Kang, Tae-Weon;Kim, Jeong-Hwan;Kwon, Jae-Yong;Kang, Jin-Seob
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.2
    • /
    • pp.180-188
    • /
    • 2013
  • A W-band waveguide noise measurement system for calibrating noise sources was implemented and its basic characteristics were discussed. The measurement system consists of a commercial noise figure analyzer, a full W-band frequency converter, and a local oscillator. To measure the noise temperature of a noise source, the Y-factor method is generally used. Since the Y-factor method is based on the assumption that the receiving system is linear, linearity is one of important performance parameters of the measurement system. In this paper, the linearities for mixer, intermediate frequency(IF), and RF parts were evaluated to be 0.24 dB, 0.05 dB, and 0.20 dB, respectively. The noise figure of the measurement system evaluated is 5 dB to 17 dB in W-band. The measurement system can be used to measure thermal noise characteristics of electronic and electrical devices, equipments, and systems as well as to calibrate noise sources.

Development and Performance Evaluation of Hydroxyl Radical Generator using Electron Emission Type High Voltage and Low Current Discharger (전자방사식 고압 저전력 방전을 이용한 OH radical 발생기의 개발과 성능 평가)

  • Kang, Hyung-Sub;Hong, Young-Pyo;Lee, In-Ho;Kim, Gi-Beum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.558-566
    • /
    • 2017
  • In this study, we developed an electron-emission OH radical generator for waste water treatment. The stability of the circuitry was ensured by implementing stable pulse waves with a MOSFET and reducing the momentary current rise. The OH radical generator uses a high-voltage and low-current discharger. The performance of the device was evaluated experimentally, which showed that it is possible to produce a stable and uniform pulse waveform for the drain current of the power MOSFET, which is connected to the input side of an AC multiplying converter through negative feedback circuitry with CR-snubber architecture. It was also possible to reduce the excitation current of the converter and improve the stability of the oscillation circuit. In addition, the generator can generate hydroxyl radicals stably. The bactericidal activities were also evaluated, and the germicidal power for E. coli, S. aureus, and S. flexneriwas improved by 99.9% or more after 60 minutes.

The Study on the Embedded Active Device for Ka-Band using the Component Embedding Process (부품 내장 공정을 이용한 5G용 내장형 능동소자에 관한 연구)

  • Jung, Jae-Woong;Park, Se-Hoon;Ryu, Jong-In
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.3
    • /
    • pp.1-7
    • /
    • 2021
  • In this paper, by embedding a bare-die chip-type drive amplifier into the PCB composed of ABF and FR-4, it implements an embedded active device that can be applied in 28 GHz band modules. The ABF has a dielectric constant of 3.2 and a dielectric loss of 0.016. The FR-4 where the drive amplifier is embedded has a dielectric constant of 3.5 and a dielectric loss of 0.02. The proposed embedded module is processed into two structures, and S-parameter properties are confirmed with measurements. The two process structures are an embedding structure of face-up and an embedding structure of face-down. The fabricated module is measured on a designed test board using Taconic's TLY-5A(dielectric constant : 2.17, dielectric loss : 0.0002). The PCB which embedded into the face-down expected better gain performance due to shorter interconnection-line from the RF pad of the Bear-die chip to the pattern of formed layer. But it is verified that the ground at the bottom of the bear-die chip is grounded Through via, resulting in an oscillation. On the other hand, the face-up structure has a stable gain characteristic of more than 10 dB from 25 GHz to 30 GHz, with a gain of 12.32 dB at the center frequency of 28 GHz. The output characteristics of module embedded into the face-up structure are measured using signal generator and spectrum analyzer. When the input power (Pin) of the signal generator was applied from -10 dBm to 20 dBm, the gain compression point (P1dB) of the embedded module was 20.38 dB. Ultimately, the bare-die chip used in this paper was verified through measurement that the oscillation is improved according to the grounding methods when embedding in a PCB. Thus, the module embedded into the face-up structure will be able to be properly used for communication modules in millimeter wave bands.

A Design of Power Management IC for CCD Image Sensor (CCD 이미지 센서용 Power Management IC 설계)

  • Koo, Yong-Seo;Lee, Kang-Yoon;Ha, Jae-Hwan;Yang, Yil-Suk
    • Journal of IKEEE
    • /
    • v.13 no.4
    • /
    • pp.63-68
    • /
    • 2009
  • The power management integrated circuit(PMIC) for CCD image sensor is presented in this study. A CCD image sensor is very sensitive against temperature. The temperature, that is heat, is generally generated by the PMIC with low efficiency. Since the generated heat influences performance of CCD image sensor, it should be minimized by using a PMIC which has a high efficiency. In order to develop the PMIC with high efficiency, the input stage is designed with synchronous type step down DC-DC converter. The operating range of the converter is from 5V to 15V and the converter is controlled using PWM method. The PWM control circuit consists of a saw-tooth generator, a band-gap reference circuit, an error amplifier and a comparator circuit. The saw-tooth generator is designed with 1.2MHz oscillation frequency. The comparator is designed with the two stages OP Amp. And the error amplifier has 40dB DC gain and $77^{\circ}$ phase margin. The output of the step down converter is connected to input stage of the charge pump. The output of the charge pump is connected to input of the LDO which is the output stage of the PMIC. Finally, the PMIC, based on the PWM control circuit and the charge pump and the LDO, has output voltage of 15V, -7.5V, 3.3V and 5V. The PMIC is designed with a 0.35um process.

  • PDF

Effects of the Co-treatment of Municipal Wastewater with Microwave-Irradiated Excess Sludge on the Performance of the Activated Sludge Process (초단파조사 처리된 잉여슬러지와 하수의 병합처리가 활성슬러지공법의 성능에 미치는 영향)

  • Kim, Nam-Chul;Jang, Myung-Bae;Cho, Yun-Kyung;Cho, Kwang-Myeung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.3
    • /
    • pp.304-310
    • /
    • 2007
  • The purpose of this research was to investigate the effects of the co-treatment of municipal wastewater with microwave-irradiated excess sludge on the treatment efficiency and excess sludge production of the activated sludge process. When 250 mL of excess sludge with a MLSS concentration of approximately 2,000 mg/L was microwave-irradiated at $20^{\circ}C$ for $40\sim300$ sec by a microwave oven (2,450 MHz, 700 W), the temperature of the sludge increased at a rate of approximately $20^{\circ}C/min$ and the SCOD, TKN and T-P concentrations of the sludge showed the highest increase in the irradiation time of $40\sim130$ sec. And, the oxygen uptake rate measurement of the sludge microorganism suggested most of the microorganisms in the sludge were destroyed at an irradiation time above 130 sec(above $65^{\circ}C$). When the municipal wastewater and microwave-irradiated excess sludge was co-treated by the activated sludge process, almost no effect was observed in the pH and alkalinity of both the influent and effluent, but the influent concentrations of SS, COD, T-N and T-P increased. Even though the effluent SS, BOD and T-P concentrations showed almost no effect, the COD and TKN concentrations increased. The microbial yield coefficient decreased at a rate of 0.91 g SS/g COD removed as the irradiation ratio increased at a rate of 1 g SS/g SS-day.

A Novel Method for Rejection of the Spurious Signal in Weaver-Type Up-Conversion Mixer (위버구조 상향변환 혼합기의 스퓨리어스 신호 제거 방법)

  • 김영완;송윤정;김유신;이창석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.7
    • /
    • pp.661-668
    • /
    • 2004
  • A novel method to reject the spurious signals which are occurred at Weaver-type low-IF transmitter was proposed in this paper. The spurious signals are generated by the gain and phase imbalances of I/Q channel or imperfect characteristics of 90$^{\circ}$ phase shifter in local oscillator for I/Q channel source. By deriving the gain and phase-based functions from RF spurious signal with the channel imbalance information, the lie channel imbalances were deduced as functions with magnitude and sign dependent on I/Q channel imbalance degree. The proposed method compensates the estimated I/Q channel imbalances by correlation values between the down-converted signal obtained by squaring the output signal itself using a simple mixer and the modified baseband signal. By comparing two signals after A/D conversion, the magnitude and sign of each type of imbalances can be determined separately and simultaneously. Based on the I/Q channel imbalance compensation, the spurious signals can be reduced by adjusting the gain and phase values of I or Q channel signal. The way to estimate the channel imbalances of the up-conversion mixer was presented and verified by using theoretical derivations and computer simulations.