• 제목/요약/키워드: 반응성 연료

검색결과 517건 처리시간 0.032초

메탄올 내부개질형 용융탄산염 연료전지의 성능 (Performance of a Molten Carbonate Fuel Cell With Direct Internal Reforming of Methanol)

  • 하명주;윤성필;한종희;임태훈;김우식;남석우
    • 청정기술
    • /
    • 제26권4호
    • /
    • pp.329-335
    • /
    • 2020
  • 재생에너지로부터 수전해를 통하여 생산된 수소와 포집된 CO2를 활용하여 메탄올을 합성하는 power-to-methanol 기술이 재생에너지를 대용량으로 저장하는 방안으로 제시되고 있다. 본 연구에서는 메탄올을 수소 및 전력 생산에 활용함에 있어 더욱 효율적인 방법으로 연료전지 내부에서 메탄올 수증기개질 반응이 일어나는 내부개질형 용융탄산염 연료전지에 대해 성능 분석을 실시하였다. 용융탄산염 연료전지의 연료극으로 사용되는 다공성 Ni-10 wt%Cr을 촉매로 메탄올 수증기개질 반응을 수행한 결과 연료전지 운전 조건에서 연료극은 메탄올 수증기개질 반응에 충분한 활성을 나타내었다. 메탄올 수용액을 직접 용융탄산염 연료전지의 연료극으로 공급한 결과 연료전지의 성능은 외부 개질기를 통하여 생산된 개질가스를 공급하는 경우에 비해 다소 성능이 낮게 나타났으며, 메탄올 공급유량이 비교적 낮은 경우 고 전류밀도에서 불안정한 성능을 나타내었다. 연료극으로부터 생성된 가스를 재순환시킴으로써 연료전지의 성능을 향상시킬 수 있었으며, 메탄올 전환율도 90% 이상 얻을 수 있었다. 물질수지를 통하여 연료극에서 일어나는 반응을 분석한 결과 전류밀도 및 가스 재순환 유량이 증가함에 따라 메탄올 수증기개질 반응속도가 증가함을 확인하였다. 이상의 결과로부터 별도의 촉매층을 설치할 필요 없이 연료극 만으로도 용융탄산염 연료전지 내에서 메탄올 수증기개질 반응이 가능하며, 메탄올 내부개질형 용융탄산염 연료전지를 통하여 전력과 합성가스를 동시에 생산할 수 있음을 확인하였다.

연료극 지지체식 Flat Tube 고체산화물 연료전지 제조 및 특성 (Fabrication and Characteristics of Anode Supported Flat Tube Solid Oxide Fuel Cell)

  • 김종희;손희정;이길용;유승호;신동원;송락현;현상훈
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 춘계학술발표강연 및 논문개요집
    • /
    • pp.76-76
    • /
    • 2003
  • 제 3세대로 불리우는 차세대 발전시스템인 고체산화물 연료전지(Solid Oxide Fuel Cell, SOFC)는 연료전지 가운데 발전효율이 가장 높고, NOx와 SOx의 발생이 없는 무공해 청정에너지 발전 시스템으로 많은 연구가 진행되고 있다. 이중 원통형 구조는 전력밀도가 평판형 구조에 비해 다소 떨어지나 반응기체의 밀봉이 쉽고, 기계적 강도가 높으며, 열응력에 대한 저항성이 높아 스텍제작이 비교적 용이하며 장기 운전이 가능하다는 장점이 있으며, 평판형 구조의 경우는 전류의 흐름이 구성요소의 면에 수직방향으로 흐르므로 전력밀도가 높은 장점이 있으나 가스의 밀봉이 어렵고, 기계적 강도나 열응력에 대한 저항성이 높은 단점을 갖고 있다. 본 연구에서는 원통형 구조와 평판형 구조의 상호 장점을 보완하여 기존의 원통형의 구조를 최적화하여 개선한 연료극 지지체식 Flat-Tube형 고체산화물 연료전지의 제조와 특성에 대한 연구를 발표하고자 한다.

  • PDF

SO-DCFC 적용을 위한 카본블랙-탄산염 혼합 매개체의 고온 반응 특성에 대한 연구 (A Study on Reactions of Carbon-Carbonate Mixture at Elevated Temperature: As an Anode Media of SO-DCFC)

  • 유준호;강경태;황준영
    • 대한기계학회논문집B
    • /
    • 제38권8호
    • /
    • pp.677-685
    • /
    • 2014
  • 직접 탄소 연료전지(DCFC)는 석탄을 비롯한 탄소계 연료의 화학에너지를 직접 전기로 변환시킨다. 특히, 약 10 년 전에 고체산화물 전해질을 사용하고 연료극 매개체로 용융탄산염을 사용하는 고성능 직접탄소 연료전지 시스템이 제안되었다. 이 시스템의 경우, 운전 온도가 증가할수록 고체산화물 전해질의 이온 전도도가 향상되고 전기화학 반응이 활성화되어 성능이 향상되나, 연료극 매개체의 화학적인 안정성 문제발생이 우려된다. 본 연구에서는 탄소-탄산염 혼합 매개체의 고온 안정성을 이해하기 위한 일련의 실험을 수행하였다. 질소 또는 이산화탄소 분위기에서 카본블랙과 혼합된 $Li_2CO_3$$K_2CO_3$의 TGA 분석을 수행하였으며, 가열 과정에서 시료로부터 생성되는 가스 성분을 분석하였다. 이러한 결과를 해석하기 위하여, 탄산염의 열분해와 탄산염 등에 의하여 가속화되는 탄소 가스화 반응을 고려한 화학반응 모델을 제시하였으며, 실험 결과로부터 구한 매개체의 중량 손실과 가스 생성을 정성적으로 설명하였다.

석유 코크스, 바이오매스, 혼합연료의 이산화탄소 가스화 반응 연구 (A Reaction Kinetic Study of CO2 Gasification of Petroleum Coke, Biomass and Mixture)

  • 국진우;신지훈;곽인섭;이시훈
    • 공업화학
    • /
    • 제26권2호
    • /
    • pp.184-192
    • /
    • 2015
  • 석유 코크스, 바이오매스, 혼합연료들의 이산화탄소 가스화 반응성을 측정하고 비교하기 위해서 TGA (Thermogravimetric analyzer)를 이용하여 $1,100{\sim}1,400^{\circ}C$의 char-$CO_2$ 가스화 반응을 조사하였다. 기-고체반응속도 모델들에 적용하여 $1,100{\sim}1,400^{\circ}C$의 온도 영역에서의 반응 속도 상수를 구하였다. 또한 반응 속도 상수와 온도와의 관계를 Arrhenius 식에 적용하여 각 모델에서의 활성화에너지(Ea) 및 빈도 인자($K_0$)를 구하고 이를 실험값과 비교하여 석유 코크스, 바이오매스, 혼합 연료들의 이산화탄소 가스화 반응을 잘 모사하는 반응 속도식을 제시하였다. 반응온도가 증가할수록 이산화탄소 가스화에 소요되는 반응시간은 감축되었다. 또한 바이오매스와의 혼합이 증가할수록 활성화 에너지의 감소를 보여 바이오매스의 혼합이 석유 코크스의 이산화탄소 가스화 반응에 시너지 효과를 가져옴을 확인하였다.

차세대 연료전지 기술 국가기술지도 [NTRM]

  • 한종희;임태훈
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2003년도 춘계 학술발표회 논문집
    • /
    • pp.121-139
    • /
    • 2003
  • 기술분석, 기술적 극복과제 도출 및 해결방안, 경제성 분석(환경 cost 고려), 단계별 개발목표의 정량화, 목표달성 방안(추진 시나리오), 기술의 정의 : 연료의 화학에너지를 전기화학반응에 의해 전기에너지로 직접 변환하는 발전 장치로서, 기존의 발전 기술보다 높은 발전효율로 그리고 공해물질 배출은 줄이면서 전기와 열을 동시에 생산하는 기술(중략)

  • PDF

초음파를 이용한 해수반응 연료의 연소거동 고찰 연구 (A Study for burning behavior of Hydro-Reactive metal fuel using Ultrasound)

  • 서무경;강토;조승완;김학준;송성진;김준형;유지창;정정용
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.451-454
    • /
    • 2011
  • 수중에서 추진되는 초고속 로켓 모터에 적용이 가능한 해수반응 금속연료 (Hydro-Reactive metal Fuel, 이하 HRF) 추진제는 연료의 적재량을 증가시키기 위해 채용하는 추진제이다. 하지만, 현재까지 HRF 추진제에 대한 연소속도 측정 기술 개발에 대한 연구는 미비한 상태이다. 본 연구팀은 연소 속도를 측정하는 기법들 중, 한 번의 실험으로 압력 변화에 따른 연소속도 측정이 가능한 초음파 법을 개발하여 고체 추진제의 연소속도를 측정하고 신뢰성을 검증하였다. 본 논문에서는 기 개발된 시스템을 이용하여 HRF 추진제의 연소 속도를 측정하였다.

  • PDF

Methanol에 저항성을 가진 DMFC용 cathode catalyst의 개발 (Development of methanol resistance catalysts for DMFC cathodes)

  • 오종길;김한성
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.204-207
    • /
    • 2007
  • DMFC(direct methanol fuel cell)는 액체연료의 이동과 저장의 용이성 때문에 이동용 장치를 위한 전원공급 장치로서 오랫동안 관심을 받아왔다. 하지만 methanol crossover는 DMFC의 상용화 이전에 해결해야 할 문제이다. 이를 위해 많은 분야에서 연구가 진행되고 있고, 그중에서 methanol에 저항성을 가진 촉매의 개발에 활발히 연구가 진행되고 있다. 본 연구에서는, 표연개질 된 PtCo/C 촉매를 사용하여 메탄올에 저항성을 가진 촉매를 합성하였다. 합성된 촉매의 size와 morphology를 알아보기 위해 transmission electron microscopy (TEM)를 사용하였다. 또한 methanol 존재 하에 산소환원반응의 activity를 알아보기 위해 Rotating ring disk electrode(RRDE) test를 하였고, MEA를 제작하여 full cell test도 병행하였다.

  • PDF

석탄 산처리에 따른 연료의 표면 물성 변화와 직접탄소 이용 연료전지 성능 간의 상관관계 분석분석 (Correlation Between Surface Properties of Fuel and Performance of Direct Carbon Fuel Cell by Acid Treatment)

  • 김동헌;엄성용;최경민;김덕줄
    • 대한기계학회논문집B
    • /
    • 제40권11호
    • /
    • pp.697-704
    • /
    • 2016
  • 본 논문에서는 역청탄인 Glencore 탄을 염산과 질산수용액을 이용하여 산 처리하고 원탄과 산 처리 된 석탄의 물리, 화학적 비교분석과 직접탄소 이용 연료전지(Direct Carbon Fuel Cell, DCFC)의 성능 비교 분석을 수행하였다. 석탄의 물성들을 분석하기 위해 열중량 분석과 가스 흡착법, X선 광전자 분광법을 수행하였다. 열중량 분석을 통해 연료의 열적 반응성이 증가하였음을 알 수 있었고, 가스 흡착법 결과로 기공의 평균지름은 변화가 없었지만 표면적은 감소함을 알 수 있었다. X선 광전자 분광법에서는 $HNO_3$ 처리의 경우 가장 높은 산소/탄소 비율을 보였고, 이를 통해 다양한 표면 산소작용기가 증가한 것을 확인하였다. 연료의 표면 물성과 전기화학 성능을 비교한 결과, 표면의 산소 성분의 변화가 DCFC의 성능 향상에 가장 큰 영향을 미침을 알 수 있었다.

석탄 합성가스를 이용한 온도 및 압력변화에 대한 메탄화 반응 특성 (Methanation of syngas on Ni-based catalyst with various reaction conditions)

  • 김수현;유영돈;류재홍;변창대;임효준;김형택
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.129.1-129.1
    • /
    • 2010
  • 석탄가스화로부터 얻어진 합성가스는 CO, $H_2$가 주성분으로, 그 자체를 연료로 사용하여 발전을 하거나 또는 적절한 정제, 분리 및 합성을 통해 다양한 원료물질을 생산할 수 있다. 이러한 석탄의 청정 사용 기술은 최근의 에너지 분야에서 많은 관심을 불러일으키고 있는 고유가 현상 및 석유자원 고갈에 대비할 수 있는 현실적인 방법의 하나로 여겨지고 있다. 석유를 대체할 에너지원으로서 석탄을 이용하는 다양한 응용 방법 중의 하나로 가스화 반응을 통해 발생하는 합성가스를 이용한 SNG 제조 공정을 들 수 있는데, 이는 석탄 등의 고체 시료를 이용하여 메탄이 주성분인 연료가스를 생산하는 것이다. SNG(Synthesis Natural Gas 또는Substitute Natural Gas)는 합성천연가스 또는 대체천연가스로 불리어지는데 주로 석탄의 가스화를 통해 얻어진 합성가스(syngas 또는 synthesis gas)인 CO, $H_2$를 촉매에 의한 합성반응을 통해 얻을 수 있다. SNG 합성 반응(메탄화 반응)은 보통 수성가스 전환 공정과 가스 정제 공정을 거친 합성가스를 $CH_4$로 전환하는 것으로 석탄을 이용한 SNG 제조 공정에서 가장 핵심 공정인 메탄화 반응은 높은 발열반응으로 주로 니켈 촉매를 사용하며 $250{\sim}400^{\circ}C$에서 반응이 이루어진다. SNG 합성 반응은 공급되는 합성가스의 조성($H_2$/CO 비), 공급되는 합성가스의 유량과 반응기에 충진된 촉매의 부피와의 관계를 나타낸 공간속도, 반응온도 등의 조건에 따라 반응 특성이 달라질 수 있다. 가스화 반응을 통해 생성되는 합성가스를 이용한 SNG 합성반응(메탄화 반응)의 특성을 파악하기 위하여 Lab-scale 규모의 고정층 반응기를 이용하여 Ni 함량이 다른 2종류의 촉매를 대상으로 반응온도 및 압력에 따른 CO 전환율, $CH_4$ 선택도, $CH_4$ 생산성 변화를 파악하였다. 실험 결과 반응기의 온도가 350도 이상의 조건에서 CO 전환율은 99.8%이상, $CH_4$ 선택도는 90.7%이상으로 나타났으며, 공간속도가 2,000 1/h 이상의 조건에서는 $CH_4$ 생산성이 500 ml/g-cat, h을 만족하였다.

  • PDF