• Title/Summary/Keyword: 반복적 보정기법

Search Result 79, Processing Time 0.029 seconds

Face Detection based on Pupil Color Distribution Maps with the Frequency under the Illumination Variance (빈도수를 고려한 눈동자색 분포맵에 기반한 조명 변화에 강건한 얼굴 검출 방법)

  • Cho, Han-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.5
    • /
    • pp.225-232
    • /
    • 2009
  • In this paper, a new face detection method based on pupil color distribution maps with the frequency under the illumination variance is proposed. Face-like regions are first extracted by applying skin color distribution maps to a color image and then, they are reduced by using the standard deviation of chrominance components. In order to search for eye candidates effectively, the proposed method extracts eye-like regions from face-like regions by using pupil color distribution maps. Furthermore, the proposed method is able to detect eyes very well by segmenting the eye-like regions, based on a lighting compensation technique and a segmentation algorithm even though face regions are changed into dark-tone due to varying illumination conditions. Eye candidates are then detected by means of template matching method. Finally, face regions are detected by using the evaluation values of two eye candidates and a mouth. Experimental results show that the proposed method can achieve a high performance.

  • PDF

Turbid water atmospheric correction for GOCI: Modification of MUMM algorithm (GOCI영상의 탁한 해역 대기보정: MUMM 알고리즘 개선)

  • Lee, Boram;Ahn, Jae Hyun;Park, Young-Je;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.2
    • /
    • pp.173-182
    • /
    • 2013
  • The early Sea-viewing Wide Field-of-view Sensor(SeaWiFS) atmospheric correction algorithm which is the basis of the atmospheric correction algorithm for Geostationary Ocean Color Imager(GOCI) assumes that water-leaving radiances is negligible at near-infrared(NIR) wavelengths. For this reason, all of the satellite measured radiances at the NIR wavelengths are assigned to aerosol radiances. However that assumption would cause underestimation of water-leaving radiances if it were applied to turbid Case-2 waters. To overcome this problem, Management Unit of the North Sea Mathematical Models(MUMM) atmospheric correction algorithm has been developed for turbid waters. This MUMM algorithm introduces new parameter ${\alpha}$, representing the ratio of water-leaving reflectance at the NIR wavelengths. ${\alpha}$ is calculated by statistical method and is assumed to be constant throughout the study area. Using this algorithm, we can obtain comparatively accurate water-leaving radiances in the moderately turbid waters where the NIR water-leaving reflectance is less than approximately 0.01. However, this algorithm still underestimates the water-leaving radiances at the extremely turbid water since the ratio of water-leaving radiance at two NIR wavelengths, ${\alpha}$ is changed with concentration of suspended particles. In this study, we modified the MUMM algorithm to calculate appropriate value for ${\alpha}$ using an iterative technique. As a result, the accuracy of water-leaving reflectance has been significantly improved. Specifically, the results show that the Root Mean Square Error(RMSE) of the modified MUMM algorithm was 0.002 while that of the MUMM algorithm was 0.0048.

Performance Analysis of the Array Shape Estimation Methods Based on the Nearfield Signal Modeling (근거리 신호 모델링을 기반으로 한 어레이 형상 추정 기법들의 성능 분석)

  • Park, Hee-Young;Lee, Chung-Yong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.5
    • /
    • pp.221-228
    • /
    • 2008
  • To estimate array shape with reference sources in SONAR systems, nearfield signal modeling is required for the reference sources near a towed array. Array shape estimation method based on the nearfield signal modeling generally exploits the spatial covariance matrix of the received reference sources. Among those method, nearfield eigenvector method uses the eigenvector corresponding to the maximum eigenvalue as a steering vector of the reference source. In this paper, we propose a simplified subspace fitting method based on the nearfield signal modeling with spherical wave modeling. Furthermore, we analyze performance of the array shape estimation methods based on the nearfield signal modeling for various environments. The results of the numerical experiments indicate that the simplified subspace fitting method and the nearfield eigenvector method with single reference source shows almost similar performance. Furthermore, the simplified subspace fitting method with 2 reference sources consistently estimates the shape of the array regardless of the incident angle of the reference sources, whereas the nearfield eigenvector method cannot apply for the case of 2 reference sources.

A Study on Improving the Efficiency of Facility Safety Inspection Work Using Images (영상을 활용한 시설물 안전점검 작업 효율성 향상 방안 연구)

  • Jeon, Kyungsik;Kim, Jintae;Lee, Byoungkil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.3
    • /
    • pp.179-186
    • /
    • 2021
  • In general, the daily safety inspection activities, which investigate damages in structures and measures the size of the damage, have been relied heavily on the visual inspection so far. Since the probe of the condition and performance of facilities by such personnel is often dependent on the subjective judgment of the investigator, the consistency and repeatability of the probing results may reduce. Particularly, damage located in a difficult-to-reach place depends mainly on experience with the naked eye, and an unsafe method using a ladder has mainly applied when necessary. Therefore, in this study, we tried to propose a way of using images that can reduce the deviation between safety inspection investigators, enhance objectivity, and improve the safety of workers. In this study, we have applied homographic transformation as a method of correcting the image. As a result of analyzing the size of the damage in the corrected image of the test subject, it confirms that the accuracy of measuring the magnitude of the damage can satisfy the target levels of 5.0mm and 0.005m2, the target accuracy levels. As a result of the field verification test to which the proposed image correction technique applied, the coefficient of variation of the crack length in the structure decreased from 5.4~7.0% to 0.072~0.12%, and that of the damaged area from 10.9% to 1.6%. It confirms that the measurement accuracy is improved. Therefore, it is expected that this study on the image utilization technique in safety inspection activities can increase the accuracy of damage measurement and improve the reliability of the safety inspection reports and exterior survey drawings.

Comparison of Co-registration Algorithms for TOPS SAR Image (TOPS 모드 SAR 자료의 정합기법 비교분석)

  • Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1143-1153
    • /
    • 2018
  • For TOPS InSAR processing, high-precision image co-registration is required. We propose an image co-registration method suitable for the TOPS mode by comparing the performance of cross correlation method, the geometric co-registration and the enhanced spectral diversity (ESD) matching algorithm based on the spectral diversity (SD) on the Sentinel-1 TOPS mode image. Using 23 pairs of interferometric pairs generated from 25 Sentinel-1 TOPS images, we applied the cross correlation (CC), geometric correction with only orbit information (GC1), geometric correction combined with iterative cross-correlation (GC2, GC3, GC4), and ESD iteration (ESD_GC, ESD_1, ESD_2). The mean of co-registration errors in azimuth direction by cross correlation and geometric matching are 0.0041 pixels and 0.0016 pixels, respectively. Although the ESD method shows the most accurate result with the error of less than 0.0005 pixels, the error of geometric co-registration is reduced to 0.001 pixels by repetition through additional cross correlation matching between the reference and resampled slave image. The ESD method is not applicable when the coherence of the burst overlap areas is low. Therefore, the geometric co-registration method through iterative processing is a suitable alternative for time series analysis using multiple SAR data or generating interferogram with long time intervals.

Comparative Study of Functional Magnetic Resonance Imaging by Global Scaling Analysis (Global Scaling 분석방법에 따른 기능적 자기공명영상의 비교 연구)

  • Yoo, Dong-Soo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.1
    • /
    • pp.26-31
    • /
    • 2006
  • Purpose : To evaluate the effect of global scaling analysis on brain activation for sensory and motor functional MR imaging study. Materials and methods : Four normal subjects without abnormal neurological history were included. Arm extension-flexion movement was used for motor function and 1KHz pure tone stimulation was used for auditory function. Functional magnetic resonance imaging was performed at 3T MRI (GE, Milwaukee, USA) using BOLD-EPI technique and SPM2 was employed for data analysis. On data analysis, the brain activation images were obtained with and without global scaling by fixing other parameters such as motion correction and realignment. Results : The difference in brain activation between no scaling and global scaling was not large in case of right upper extremity movement (p<0.000001). For auditory test, brain activation with global scaling showed larger activation than that of without global scaling (p<0.05). Conclusion : A caution must be taken into account when analyzing functional imaging data with global scaling especially for functional study of small local BOLD signal change.

  • PDF

Three-Dimensional Image Registration using a Locally Weighted-3D Distance Map (지역적 가중치 거리맵을 이용한 3차원 영상 정합)

  • Lee, Ho;Hong, Helen;Shin, Yeong-Gil
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.7
    • /
    • pp.939-948
    • /
    • 2004
  • In this paper. we Propose a robust and fast image registration technique for motion correction in brain CT-CT angiography obtained from same patient to be taken at different time. First, the feature points of two images are respectively extracted by 3D edge detection technique, and they are converted to locally weighted 3D distance map in reference image. Second, we search the optimal location whore the cross-correlation of two edges is maximized while floating image is transformed rigidly to reference image. This optimal location is determined when the maximum value of cross-correlation does't change any more and iterates over constant number. Finally, two images are registered at optimal location by transforming floating image. In the experiment, we evaluate an accuracy and robustness using artificial image and give a visual inspection using clinical brain CT-CT angiography dataset. Our proposed method shows that two images can be registered at optimal location without converging at local maximum location robustly and rapidly by using locally weighted 3D distance map, even though we use a few number of feature points in those images.

A New Band-Pass Filter with Symmetrical Attenuation Characteristics (대칭적인 감쇠 특성을 갖는 대역 통과 여파기)

  • Bae, Ju-Seok;Lim, Jong-Sik;Kim, Kwi-Soo;Ahn, Dal
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.8
    • /
    • pp.884-890
    • /
    • 2008
  • In this paper, Characteristics responded to frequency of a band-pass filter with admittance inverters(J-inverters) is considered. As a result, it is confirmed that attenuation characteristics of upper and lower frequency is asymmetric. And a modified circuit and design formulas are proposed to improve the asymmetric attenuation characteristics. By confirming the simulated and measured results that are got from designed and made a experiment on the band-pass filter with the proposed circuit and formulas for design, we confirm that the asymmetric attenuation characteristics of the band-pass filter are improved without any optimization or iterative design procedures and additional calculation efforts.

Isogeometric Analysis of FG-CNTRC Plate in Bending based on Higher-order Shear Deformation Theory (탄소 나노튜브 보강 기능경사복합재 판의 등기하 거동 해석)

  • Jeon, Juntai
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.839-847
    • /
    • 2021
  • Purpose: This study investigates mechanical behavior of functionally graded (FG) carbon nanotube-reinforced composite (CNTRC) plate in flexure. Isogeometric analysis (IGA) method coupled with shear deformable theory of higher-order (HSDT) to analyze the nonlinear bending response is presented. Method: Shear deformable plate theory into which a polynomial shear shape function and the von Karman type geometric nonlinearity are incorporated is used to derive the nonlinear equations of equilibrium for FG-CNTRC plate in bending. The modified Newton-Raphson iteration is adopted to solve the system equations. Result: The dispersion pattern of carbon nanotubes, plate geometric parameter and boundary condition have significant effects on the nonlinear flexural behavior of FG-CNTRC plate. Conclusion: The proposed IGA method coupled with the HSDT can successfully predict the flexural behavior of FG-CNTRC plate.

A CMOS Readout Circuit for Uncooled Micro-Bolometer Arrays (비냉각 적외선 센서 어레이를 위한 CMOS 신호 검출회로)

  • 오태환;조영재;박희원;이승훈
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.1
    • /
    • pp.19-29
    • /
    • 2003
  • This paper proposes a CMOS readout circuit for uncooled micro-bolometer arrays adopting a four-point step calibration technique. The proposed readout circuit employing an 11b analog-to-digital converter (ADC), a 7b digital-to-analog converter (DAC), and an automatic gain control circuit (AGC) extracts minute infrared (IR) signals from the large output signals of uncooled micro-bolometer arrays including DC bias currents, inter-pixel process variations, and self-heating effects. Die area and Power consumption of the ADC are minimized with merged-capacitor switching (MCS) technique adopted. The current mirror with high linearity is proposed at the output stage of the DAC to calibrate inter-pixel process variations and self-heating effects. The prototype is fabricated on a double-poly double-metal 1.2 um CMOS process and the measured power consumption is 110 ㎽ from a 4.5 V supply. The measured differential nonlinearity (DNL) and integrat nonlinearity (INL) of the 11b ADC show $\pm$0.9 LSB and $\pm$1.8 LSB, while the DNL and INL of the 7b DAC show $\pm$0.1 LSB and $\pm$0.1 LSB.