Newton-Raphson 기법은 구조물의 비선형 해석에 널리 쓰이는 반복계산기법이다. 비선형 해석을 위한 반복계산기법은 컴퓨터의 발달을 감안해도 상당한 계산시간이 소요된다. 본 논문에서는 신경회로망 예측을 사용한 Predicted Newton-Raphson 반복계산기법을 제안하였다. 통상적인 Newton-Raphson 기법은 이전스텝에서 수렴된 점으로부터 현재 스텝의 반복계산을 시작하는 반면 제시된 방법은 현재 스텝 수렴해에 대한 예측점에서 반복계산을 시작한다. 수렴해에 대한 예측은 신경회로망을 사용하여 이전 스텝 수렴해의 과거경향을 파악한 후 구한다. 반복계산 시작점이 수렴점에 보다 근접하여 위치하므로 수렴속도가 빨라지게 되고 허용되는 하중스텝의 크기가 커지게 된다. 또한 반복계산의 시작점으로부터 이루어지는 계산과정은 통상적인 Newton-Raphson 기법과 동일하므로 기존의 Newton-Raphson 기법과 정확히 일치하는 수렴해를 구할 수 있다. 구조물의 정적 비선형 거동에 대한 수치해석을 통하여 modified Newton-Raphson 기법과 제시된 Predicted Newton=Raphson 기법의 정확성과 효율성을 비교하였다. 제시된 Predicted Newton-Raphson 기법은 modified Newton-Raphson 기법과 동일한 해를 산출하면서도 계산상의 효율성이 매우 큼을 확인할 수 있었다.
본 논문에서는 자유경계문제 해석을 위해 정확도가 향상된 implicit 이동최소제곱 차분법을 제시한다. 계면경계에 대한 implicit 정의로 인해 비선형 시스템이 구성되고, 매 해석단계마다 절점해와 계면경계의 위치를 반복계산을 통해 찾는다. 계면경계 결정시 속도항을 한 단계 뒤로 지연시켜 explicit하게 근사적으로 계산하던 기존 방법에 비해 계면경계의 위치를 더 정확하게 계산할 수 있고, 결과적으로 해의 정확도가 향상되었다. 계면경계 위치값이 비교적 빠른 속도로 수렴하기 때문에 많은 반복계산이 필요치 않다. 수치예제를 통해 기존의 방법으로 계산한 결과와 비교하여 새롭게 개발한 implicit 방법의 향상된 정확도를 보였다.
본 논문에서는 새로운 비선형 와류격자법 계산 과정이 제안된다. 기존의 계산 과정은 자유와의 형태 계산을 위해 내부 반복계산 및 하향이완법을 포함한다. 하지만 본 논문에서는 유사 정상 개념에 기초한 새로운 수식을 제안하여 자유와의 형태를 계산함으로써, 계산 과정에서 내부 반복계산 및 하향이완법을 생략한다. 또한 반복계산이 진행됨에 따라 각 분절에 유도되는 유속도를 적절히 평균해 줌으로써 알고리듬의 수치적 안정성을 향상시킨다. 그리고 낮은 종횡비 날개에 대한 수치실험을 수행하여 분절의 길이, 와류중심반경, 후류영역 계산범위 등과 같은 중요 인자들의 적절한 기준을 경험적으로 결정한다.
수치 계산으로 고속 활주선의 저항 성능을 평가하기 위해서는 활주 상태에서의 항주자세 예측이 무엇보다도 중요하다고 할 수 있다. 항주자세의 변화가 큰 고속 활주선의 경우에는 활주 자세에 따라 선저 바닥면에서 나타나는 압력 변화에 의한 동적 부양력 변화가 크므로 단순히 정지 중 흘수를 기준으로 계산되어진 유체력으로 항주자세를 예측하기 보다는 자세 변화에 따른 동적 부양력의 변화와 이에 의한 자세 변화를 반복 계산을 통해 수렴시키는 것이 요구되어진다. 본 연구에서는 선형화된 자유수면 조건의 포텐셜 수치 계산으로 유체 동압력인 부양력을 계산해내고 이를 유체 정역학적 힘으로 간주하여 부력과 선체중량과의 힘과 트림 모멘트 평형 관계를 만족시키는 방법으로 반복적인 계산을 통해 수렴된 활주 자세를 얻어내었다.
본 논문에서는 대변형 비선형 변형체의 마찰 접촉 문제의 해법을 제시하였다. 접촉 가능 점에서 접촉조건을 접촉오차 벡터를 이용하여 표시하였으며, 이러한 접촉오차 벡터를 0으로 단조 감소시키기 위하여 반복계산법을 사용하였다. 각 반복계산은 2개의 단계로 구성되어 있다 : 첫 단계에서는 이미 구해진 해의 기하학적 모양에서 얻어지는 접촉오차 벡터를 이용하여 접촉력을 수정하고, 두 번째 단계에서는 첫 단계의 접촉력을 이용하여 평형방정식을 풀어서 변위 및 접촉오차를 계산하는 것이다. 본 반복계산법에 의하여 정확한 해를 얻을 수 있음을 설명하였으며, 강소성 막 및 비선형 탄성보를 사용하여 예제계산을 수행하였다.
Fourier 면환을 이용하여 불균일 굴절률 박막의 rugate 필터를 설계하였으며 rugate 필터의 반사율, 대역폭, 광학 두께, Q 함수 등을 변화시키며 Fourier 변환의 여러 가지 특성을 조사하였다. 주어진 단선 및 이중 rugate 필터의 과녁 스펙트럼에 불균일 굴절률 박막의 스펙트럼을 맞추기 위하여 merit 함수를 사용하였으며 merit 값이 최소가 되도록 Q 함수를 반복계산하여 수정하였다. Sossi, Bovard, Fabricius가 각각 유도한 세 종류의 Q함수를 반복계산 횟수, merit 함수의 값, 최적 광학두께 등의 관점에서 비교하였다. 반사율이 높은 rugate 필터 설계에는 반복계산 수정 후 반사율이 과녁스펙트럼에 가까운 Bovard와 Fabricius의 Q함수가 적당하며, 광학 두께는 최소 광학두께만 넘으면 반복계산 수정과정을 이용하여 과녁반사율을 맞출 수 있으므로 반사대역폭이 허용하는 광학두께로 결정하면 될 것이다.
변위형 유한요소해에 기초하고 공액근사개념 및 Loubignac의 변위장 개선방법을 국부영역에 적용하여 국부영역에서의 응력장의 정확도를 향상시킬 수 있는 방법을 제안하였다. 제안된 방법에서 계산된 국부영역의 응력장은 전체영역에 대한 응력장 개선 결과에 근접하며 유한요소 평형방정식을 잘 만족하친 있을 뿐만 아니라 수회 이내의 반복계산내에 수렴하고 있어서 계산시간이 크게 줄어들 수 있어서 국부영역에 대한 상세응력해석에 적절하게 이용될 수 있다.
Boltzmann 방정식의 비선형 해법으로서 cumulant 모멘트 방법을 연구하였으며, Maxwell 분자모형 단원자분자 기체계의 정상충격파 문제에 대하여 적용하였다. 모멘트 방정식의 해는 Maxwell-Ikenberry-Truesdell(MIT) 반복법을 사용하였다. 원래의 MIT 반복법은 초기값을 평형분포함수로부터 구하지만, 본 연구에서는 반복계산의 초기값을 Mott-Smith의 두방식(bimodal)함수로부터 구하였다. 모멘트 계산은 2차 반복단계까지 수행하였으며, 강한 충격파에 대한 밀도, 온도, stress, heat flux 등의 윤곽과 충격파의 두께, 그리고 마하수 1.4 미만의 약한 충격파의 두께를 계산하였다. 1차 반복계산에서 충격파 윤곽에 대한 간단한 형태의 해석적 표현을 얻었으며, 이로부터 도출한 약한 충격파 두께에 대한 극한법칙은 Navier-Stokes 이론과 정확히 일치한다. 2차 반복계산에 의한 결과는 강한 충격파의 윤곽곡선 및 충격파 두께가 Monte Carlo 문헌값과 정량적으로 일치함을 보인다.
일반적으로 비선형 정자계 문제를 해석하기 위해서 뉴튼-�N슨(Newton -Raphson : NR)법이 이용된다. 하지만 뉴튼-�N슨법의 경우 각 반복계산 때마다 새로운 선형 시스템의 해를 구하기 위해서 LU-decomposition과 같은 과정을 매 반복계산 때마다 시행해야 하므로 절점(node)의 수가 증가할 경우 계산시간이 증가한다는 단점이 있다. 이러한 단점을 보완하기 위해서 최근 TLM (Transmission Line Modeling)법이 새로운 반복계산법으로 비선형 유한 요소 해석에 적용되었으며 뉴튼-�N슨법에 비해 훨씬 우수한 특성을 보여주었다. 하지만 지금까지의 TLM법은 2차원의 정식화만 이루어졌고 3차원에는 적용되지 못한 것이 사실이다. 본 논문에서는 3차원의 비선형 정자계 문제에 TLM법을 적용할 수 있는 수식을 최초로 제안하며 3차원 코어(core)모델에 대해 TLM법을 적용하여 그 타당성을 검증하기로 한다. 또한 3차원 비선형 TLM법을 이용한 해석 결과가 뉴튼-�N슨법에 의한 결과와 완전히 일치하며 수렴 속도에 있어서도 훨씬 향상된 결과를 나타냄을 보이도록 하겠다.
본 연구에서는 대수 미분 방정식을 풀기위한 새로운 방법을 소개한다. 본 작업에서는 Lagrange multiplier의 값이 사전에 주어졌다고 생각하여, 즉 대수 미분 방정식을 순수한 상미분 방정식으로 변환하여, 잘 알려진 시간 적분법을 적용한다. 또 정확한 Lagrange Multiplier값은 반복 계산법(iterative scheme)에 의하여 계산한 다. 시간 적분의 정확도와 제한 조건의 정확도는 모두 보장된다. 특히 제한 조건 의 경우, 위치, 속도 및 가속도의 제한 조건이 모두 만족된다. 또 정확한 Lagrange multiplier의 값을 계산 가속기법(acceleration technique)에 의하여 대단히 빨리 계 산한다. 독립 좌표를 구할 필요가 없으므로 거대한 행열을 decomposition하는 등의 복잡한 절차가 불필요하며 N-R 반복법 역시 불필요하다. 이러한 사항들 및 Jacobian 행열의 sparsity로 인하여 경제적인 계산이 가능하게 된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.