• Title/Summary/Keyword: 반도체검출기

Search Result 144, Processing Time 0.029 seconds

Implementation of Parallel Cyclic Redundancy Check Code Encoder and Syndrome Calculator (병렬 CRC코드 생성기 및 Syndrome 계산기의 구현)

  • 김영섭;최송인;박홍식;김재균
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.1
    • /
    • pp.83-91
    • /
    • 1993
  • In the digital transmission system, cyclic redundancy check(CRC) code is widely used because it is easy to be implemented and has good performance in error detection. CRC code generator consists of several shift registers and modulo 2 adders. After manipulation of input data stream in the encoder, the remaining value of shift registers becomes CRC code. At the receiving side, error can be detected and corrected by CRC codes immediately transmitted after data stream. But, in the high speed system such as an A TM switch, it is difficult to implement the serial CRC encoder because of speed limitation of available semiconductor devices. In this paper, we propose the efficient parallel CRC encoder and syndrome calculator to solve the speed problem in implementing these functions using the existing semiconductor technology.

  • PDF

The Study on Design of Semiconductor Detector for Checking the Position of a Radioactive Source in an NDT (비파괴검사 분야에서 방사선원의 위치 확인을 위한 반도체 검출기 설계에 관한 연구)

  • Kim, Kyo-Tae;Kim, Joo-Hee;Han, Moo-Jae;Heo, Ye-Ji;Ahn, Ki-Jung;Park, Sung-Kwang
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.3
    • /
    • pp.171-175
    • /
    • 2017
  • In the non-destructive inspection field, we invest a lot of time and resources in developing the radiation source system to ensure the safety of the workers. However, the probability of accidents is still high. In order to prevent potential radiation accidents in advance, it is necessary to directly verify the position of the radiation source, but the research is still insufficient. In this study, we developed a monitoring system that can detect the position of the radiation source in the source guide tube in the gamma-ray irradiator. The characteristics of the radiation detector are estimated by monte carlo simulation. As a result, the radiation detector for Ir-192 gamma-ray energy was analyzed to have secondary electron equilibrium at $150{\mu}m$ regardless of the semiconductor material. Also, it is expected that the gamma ray response characteristic is the best in $HgI_2$. These results are expected to be used as a basis for determining the optimal thickness of the radiation detector located in the detection part of the future monitoring system. In addition, when developing a monitoring system based on this, radiation workers can easily recognize the danger and secure safety, as well as prevent and preemptively respond to potential radiation accidents.

Development of Comparative Calibration System for Helium Leak Standard by Using Mass Spectrometer Type Leak Detector (질량분석기형 누출검출기를 이용한 헬륨투과형 표준 누출 비교 교정 장치 개발)

  • Hong, Seung-Soo;Lim, In-Tae;Kim, Jin-Tae;Shin, Yong-Hyeon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.151-156
    • /
    • 2008
  • Many kinds of mass spectrometer type leak detectors have been widely used for detecting leak of vacuum processes in semiconductor and display industries etc. The leak detectors should be often calibrated by the permeation type standard leak in order to ensure accurate and reproducible leak measurement. We have developed a comparative calibration system for permeation type standard leak by using mass spectrometer type leak detector and specification of the calibration method. Following this technique the reliable calibration for leak standard ran be performed even in fields.

Analysis of Trace Impurities in The Bulk $H_2$ and He Gases by a Cold Concentration Method (저온 농축법에 의한 수소와 헬륨 중의 미량가스 분석)

  • Lee, Taeck Hong;Park, Doo Seon;Son, Moo Ryong
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.5
    • /
    • pp.526-530
    • /
    • 1998
  • Analysis of trace impurities in the gases has been very important with the development of semi-conductor related industry. Particularly, the contamination of the gas handling systems in a semi-conductor plant by the air has been a trouble to the manufacturers. Thus, the analysis of the air components in the system has been a task to the analysts. In this study, we report the analysis data with a expanded uncertainty for the trace impurities of nitrogen and argon in the bulk helium and hydrogen. All data show a good correspondence, exhibiting reliable statistical error ranges.

  • PDF

Extraction of Material Parameters and Design of Schottky Diode UV Detectors Using a Transfer Matrix Method (전달 행렬 방법을 이용한 Schottky 다이오드 자외선 광검출기의 물질특성 추출과 설계)

  • Kim Jin-Hyung;Kim Sang-Bae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.5 s.347
    • /
    • pp.25-33
    • /
    • 2006
  • We have extracted the material parameters such as absorption coefficients of GaN, $Al_{0.2}Ga_{0.8}N$, and Schottky contact metal Ni of Schottky Diode UV-A and B detectors using a transfer matrix method (TMM). The ratios of the absorbed light to the total incident amount at the depletion regions of GaN and $Al_{0.2}Ga_{0.8}N$ have been calculated in order to obtain the spectral responsivity. Absorption coefficients of the materials have been obtained by fitting the simulated data with measured data. The depletion layer thickness has been obtanied by capacitance-voltage measurement. The results pave the way for the optimum design of UV Schottky detectors. Since the absorption coefficient of the Ni electrode is very high, its thickness is a major factor that determines the responsivity. It is possible to attain improved UV detectors using thinnest possible Ni electrodes and wide depletion regions of GaN and $Al_{0.2}Ga_{0.8}N$.

Development of hyperspectral image-based detection module for internal defect inspection of 3D-IC semiconductor module (3D-IC 반도체 모듈의 내부결함 검사를 위한 초분광 영상기반 검출모듈 개발)

  • Hong, Suk-Ju;Lee, Ah-Yeong;Kim, Ghiseok
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.146-146
    • /
    • 2017
  • 현대의 스마트폰 및 태블릿pc등을 가능하게 만든 집적 기술 중의 하나는 3차원 집적 회로(3D-IC)와 같은 패키징 기술이다. 이러한 첨단 3차원 집적 기술은 메모리집적을 통한 대용량 메모리 모듈 개발뿐만 아니라, 메모리와 프로세서의 집적, high-end FPGA, Back side imaging (BSI) 센서 모듈, MEMS 센서와 ASIC 집적, High Bright (HB) LED 모듈 등에 적용되고 있다. 3D-IC의 3차원 모듈 제작 시에는 기존에 발생하지 않았던 여러 가지 파괴 모드들이 발생하고 있는데 Thermal/Photonic Emission 장비 등 기존의 2차원 결함분리 (Fault Isolation) 기술로는 첨단의 3차원 적층 제품들에서 발생하는 불량을 비파괴적으로 혹은 3차원적으로 분리하는 것이 불가능하므로, 비파괴 3차원 결함 분리 기술은 향후 선행 제품 적기 개발에 매우 필수적인 기술이다. 본 연구는 3D-IC 반도체의 비파괴적 내부결함 검사를 위하여 가시광선-근적외선 대역(351nm~1770nm)의 InGaAs (Indium Galium Arsenide) 계열 영상검출기 (imaging detector)를 사용하여 분광 시스템 광학 설계를 통한 초분광 영상 기반 검출 모듈을 제작하였다. 제작된 초분광 영상 기반 검출 모듈을 이용하여 구리 회로 위에 실리콘 웨이퍼가 3단 적층 된 반도체 더미 샘플의 초분광 영상을 촬영하였으며, 촬영된 초분광 영상에 대하여 Chemometrics model 기반의 분석기술을 적용하여 실리콘 웨이퍼 내부의 집적 구조에 대한 검사가 가능함을 확인하였다.

  • PDF