Extraction of Material Parameters and Design of Schottky Diode UV Detectors Using a Transfer Matrix Method

전달 행렬 방법을 이용한 Schottky 다이오드 자외선 광검출기의 물질특성 추출과 설계

  • Kim Jin-Hyung (LCD Business, Samsung Electronics) ;
  • Kim Sang-Bae (School of Electrical and Computer Engineering, Ajou University)
  • Published : 2006.05.01

Abstract

We have extracted the material parameters such as absorption coefficients of GaN, $Al_{0.2}Ga_{0.8}N$, and Schottky contact metal Ni of Schottky Diode UV-A and B detectors using a transfer matrix method (TMM). The ratios of the absorbed light to the total incident amount at the depletion regions of GaN and $Al_{0.2}Ga_{0.8}N$ have been calculated in order to obtain the spectral responsivity. Absorption coefficients of the materials have been obtained by fitting the simulated data with measured data. The depletion layer thickness has been obtanied by capacitance-voltage measurement. The results pave the way for the optimum design of UV Schottky detectors. Since the absorption coefficient of the Ni electrode is very high, its thickness is a major factor that determines the responsivity. It is possible to attain improved UV detectors using thinnest possible Ni electrodes and wide depletion regions of GaN and $Al_{0.2}Ga_{0.8}N$.

전달 행렬 방법과 capacitance-voltage 특성, 그리고 측정된 광응답 스펙트럼을 이용하여 Schottky 다이오드 UV-A와 B 광검출기에 사용되는 GaN, $Al_{0.2}Ga_{0.8}N$ 등의 반도체 및 Schottky 접촉 금속 Ni의 물질특성인 흡수계수(absorption coefficient)를 추출하였다. 입사된 빛이 반도체의 공핍영역에서 흡수되는 양을 구하고, 이로부터 각 파장에서의 광응답 특성을 얻는 과정을 컴퓨터 프로그램으로 구현하였다. 그리고, 계산 값을 측정치와 비교하여 각 파장에서 GaN, $Al_{0.2}Ga_{0.8}N$, Ni의 흡수계수를 얻을 수 있었다. 추출된 흡수계수를 이용하여 자외선 광검출기의 광응답을 높이는 설계 방안을 모색하였다. Ni의 흡수계수가 크기 때문에 광응답을 결정하는 주요 요소는 Ni 전극의 두께이다. 따라서 Schottky 접촉 금속 Ni의 두께를 줄이고, 공핍 영역의 크기를 늘릴 수 있다면 광응답 특성이 더욱 향상된 광검출기의 실현이 가능해질 것이다.

Keywords

References

  1. S. Keller, Yi-Feng Wu, G. Parish, N. Ziang, Jane J. Xu, B. P. Keller, S. P. DenBaars, and U. K. Mishra, 'Gallium nitride based high power heterojunction field effect transistors: process development and present status at UCSB', IEEE Transactions on Electron Devices, Vol. 48 pp. 552-559, Mar. 2001 https://doi.org/10.1109/16.906450
  2. Junji Kotani, Hideki Hasegawa and Tamotsu Hashizume, 'Computer simulation of current transport in GaN and AlGaN Schottky diodes based on thin surface barrier model', Appl. Surface Science, Vol. 237 pp. 213-218, Oct. 2004 https://doi.org/10.1016/j.apsusc.2004.06.152
  3. M. Razeghi and A. Rogalski 'Semiconductor ultraviolet detectors', J. Appl. Phys. Vol. 79, pp. 7433-7473, May 1996 https://doi.org/10.1063/1.362677
  4. D. A. Neamen, Semiconductor physics & devices, (McGraw-Hill, U. S., pp. 316, 1992)
  5. E. Monroy, F. Calle, E. Munoz, F. Omnes, 'Effects of bias on the responsivity of GaN Metal-Semiconductor-Metal photodetectors', Phys. Stat. Sol. Vol. 176, pp. 157-161, 1999 https://doi.org/10.1002/(SICI)1521-396X(199911)176:1<157::AID-PSSA157>3.0.CO;2-I
  6. L. S. Yu, Q. Z. Liu, Q. J. Xing, D. J. Qiao, S. S. Lau, and J. Redwing, 'The role of the tunneling component in the current-voltage characteristics of metal-GaN Schottky diodes', J. Appl. Phys. Vol. 84, pp. 2099-2104, Aug. 1998 https://doi.org/10.1063/1.368270
  7. 김태용, 김상배, 'Design of 850 nm Vertical-Cavity Surface-Emitting Lasers by Using a Transfer Matrix Method', 전자공학회 논문지, 제 41권, SD편, 제7호, 545-550쪽, 2004년 7월
  8. J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, Jr., B. P. Keller, U. K. Mishra, and S. P. DenBaars, 'Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements' , Appl. Phys. Lett. Vol. 71, pp. 2572-2574, Nov. 1997 https://doi.org/10.1063/1.120191
  9. Aleksandra B. Djurisic and E. Herbert Li, 'Dielectric function models for describing the optical properties of hexagonal GaN', J. Appl. Phys. Vol. 89, pp. 273-282, Jan. 2001 https://doi.org/10.1063/1.1331069
  10. E. D. Palik, Handbook of Optical Constants of Solids Vol. 2, (Academic Press, New York, pp. 322-323, 1985)
  11. J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. DenBaars, J. S. Speck, and U. K. Mishra, 'Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors', Appl. Phys. Lett. Vol. 77, pp. 250-252, Jul. 2000 https://doi.org/10.1063/1.126940