• Title/Summary/Keyword: 박스형 암거

Search Result 8, Processing Time 0.022 seconds

Analysis of Failure Behavior of the Box Culvert with 3-Axes Loading System (3축 가력시스템에 의한 박스형 암거의 파괴거동 분석)

  • Woo, Sang-Kyun;Kwon, Yong-Gil;Cho, Jun-Hyong;Han, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.5 s.57
    • /
    • pp.142-148
    • /
    • 2009
  • This paper is to investigate the fracture behavior characteristics of box culvert and incremental crack width of upper slab for the incremental loading by the 3-axis loading system. In the 3-axes loading system, loading directions are upper side, left and right side which simulate earth pressure and static traffic load. With the incremental load, crack patterns is investigated on the upper slab, left and right wall. Especially, on the upper slab, crack width is measured by crack gage. Based on the experimental results, structural internal force indices of box culvert are estimated quantitatively.

A Study on Joint Position at Concrete Pavement with Box Culverts (박스 암거가 통과하는 콘크리트 포장의 줄눈 위치에 관한 연구)

  • Park, Joo-Young;Sohn, Dueck-Su;Lee, Jae-Hoon;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.45-53
    • /
    • 2012
  • Hollows are easily made and bearing capacity is lowered near underground structures of concrete pavement because of poor compaction and long term settlement of the ground. Distresses occur and lifespan is shortened because of larger stress induced by external loadings expected than that in the design. In this paper, the distresses of the concrete pavement slab over box culverts were investigated at the Korea Expressway Corporation(KEC) test road. The transverse cracking of the slabs over the culverts was compared between up and down lines with different soil cover depth. The box culvert without soil cover and concrete pavement were modeled and analyzed by the finite element method(FEM) to verify the transverse cracking at the test road. Wheel loading was applied after self weight of the pavement and temperature gradient of the concrete slab at Yeojoo, Gyeonggi where the test road is located were considered. Positions of maximum tensile stress and corresponding positions of the wheel loading were found for each loading combination. Joint position minimizing the maximum tensile stress was found and optimal slab length over the culverts with diverse size were suggested.

A Case Study of PC-Culvert Construction with Foundation Plate (기초판 보강형 PC 암거의 시공사례 연구)

  • You, Jun;Choi, Chang-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.2
    • /
    • pp.13-19
    • /
    • 2011
  • Precast culvert system is generally constructed with a series of process such as excavation, ground mitigation, placement of culverts, anti-leakage packing between adjacent culverts, post-tensioning for PS strands and backfilling. In this process inappropriate ground mitigation often causes differential settlement and, correspondingly, makes water-leakage to be occurred between adjacent boxes. This study was performed to understand the behavioral characteristics of recently proposed precast foundation plate to support precast culvert system through on-site pilot construction. The gap between two adjacent culverts, increment of earth pressure at the bottom of culvert, vertical settlement of top of the culverts were monitored using various sensors. The monitoring results showed that the proposed foundation plate provides better culvert system in the points of less gap development, earth pressure and settlement at the adjacent of two culverts.

A Study on the Evaluation of Design Compressive Strength and Flexural Strength of the Improved Deep Corrugated Steel Plate (성능 개선된 대골형 파형강판의 설계 압축 및 휨 강도 평가에 대한 연구)

  • Sim, Jong Sung;Lee, Hyeon Gi;Kang, Tae Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.155-162
    • /
    • 2011
  • The structures that use the bridge plates are considered to have advantages such as short work term, excellent economical efficiency and low maintenance cost. Bridge plates are being widely used for water ducts and eco-corridors as replacements of reinforced concrete ducts. Bridge plates are deep and have greater pitch as compare to conventionally deep corrugated steel plate. They are expected to be increasingly used in the future. The structures that use bridge plates have two forms, such as arch type and box type. The arch type structures are designed based on the compressive strength, and the box type structures, based on the moment in the plate member. In this study, the ultimate strength and moment strength of the connection part of the specimens were examined by their thickness. Static and bending tests used to evaluate the performance of bridge plate. Finally, These results were used in the design process.

Optimum and Automation Design of Reinforced Concrete box Culvert (철근콘크리트 박스형 암거의 최적 및 자동화 설계)

  • 김종옥;김한중
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.212-218
    • /
    • 1999
  • In this study , Computer programs for the optimum and automation desgin of reinforced concrete box culvert were developed. It was shown that even though the strarting points and optimization method are different the objective function and optimum design variables converge to a value within a close range respectively, and consequently the optimum design program developed in the study is reliable and stron. 3D-design drawing can be drawn using automation desgin computer program developed in this study.

  • PDF

Monitoring the Wildlife Use of Culverts and Underpasses Using Snow Tracking in Korea (야생동물의 도로 횡단 특성 분석 -도로횡단구조물 상의 눈 위 발자국 조사를 통하여-)

  • Choi Tae-Young;Lee Yong-Wook;Whang Ki-Young;Kim Seon-Myoung;Park Moon-Sun;Park G-Rim;Cho Beom-Joon;Park Chong-Hwa;Lee Myung-Woo
    • Korean Journal of Environment and Ecology
    • /
    • v.20 no.3
    • /
    • pp.340-344
    • /
    • 2006
  • The objective of this paper was to investigate the potential of road-crossing structures as biological corridors that can overcome wildlife habitat fragmentation caused by road construction. Snow tracking on animal trace adjacent to and under bridges, underpasses, and culverts of eight rural highways in Korea was carried out. A total 89 structures were monitored and the results follow. First, the probability of road crossing increases with the increasing cross sectional size of crossing structures. Second, small to medium sized carnivores such as raccoon dog, leopard cat, and Siberian weasel use all types of structures. Finally, water deer, or large herbivore crossed only under bridges. Consequently, further studies are necessary to identify suitable types of road crossing structures that can mitigate the probability of road-kills and habitat fragmentation of water deer.

Behavior of Jointed Concrete Pavement by Box Culvert and Reinforced Slab (박스형 암거와 보강슬래브에 의한 줄눈 콘크리트 포장의 거동)

  • Park, Joo Young;Sohn, Dueck Su;Lee, Jae Hoon;Yan, Yu;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.14 no.6
    • /
    • pp.25-35
    • /
    • 2012
  • PURPOSES : Hollows are easily made, and bearing capacity can be lowered near underground structures because sublayers of pavement settle for a long time due to difficult compaction at the position. If loadings are applied in this condition, distresses may occur in pavement and, as the result, its lifespan can decrease due to the stress larger than that expected in design phase. Although reinforced slab is installed on side of box culvert to minimize the distresses, length of the reinforced slab is fixed as 6m in Korea without any theoretical consideration. The purpose of this paper is investigating the behavior of concrete pavement according to the cover depth of the box culvert ad the length of the reinforced slab. METHODS : The distresses of concrete pavement slabs were investigated and cover depth was surveyed at position where the box culverts were located in expressways. The concrete pavements including the box culverts were modeled by finite element method and their behaviors according to the soil cover depth were analyzed. Wheel loading was applied after considering self weight of the pavement and temperature gradient of the concrete pavement slab at Yeojoo, Gyeonggi where a test road was located. After installing pavement joint at various positions, behavior of the pavement was analyzed by changing the soil cover depth and length of the reinforced slab. RESULTS : As the result, the tensile stress developed in the pavement slab according to the joint position, cover depth, and reinforced slab length was figured out. CONCLUSIONS : More reasonable and economic design of the concrete pavement including the box culvert is expected by the research results.

Investigation of Microorganism-Based Autonomous Crack Healing Agent and Full-scale Verification of Crack Healing (미생물 기반 자발적 콘크리트 균열치유제 성능 분석 및 실스케일 균열치유성능 검증)

  • Yeon-Jun Yoo;Byung-Jae Lee;Joo-Kyoung Yang;Yun Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.138-143
    • /
    • 2023
  • In this study, the crack healing performance of each crack healing agent manufacturing method was analyzed by adding crack healing agents in the form of alginate gel and spore suspension inoculated with endospores of calcium carbonate-forming bacteria to mortar. In addition, by applying it to an full-scale structure in the form of a box-type culvert, we attempted to create an environment in which the developed crack healing agent can be applied not only to a laboratory environment but also to an actual field. The crack healing agent using the dry heat drying method showed crack healing performance, but in the case of the freeze drying method, many spores were killed by freeze hardening and therefore the crack healing performance was lost. As a result of SEM and XRD pattern analysis of the presumed crack healing material extracted from the crack of a full-scale structure, it was found to be calcite, one of the calcium carbonate crystals produced by microorganisms applied to the crack healing agent. In conclusion, it was found that the crack healing by microorganisms can be implemented in a real structure.