• Title/Summary/Keyword: 박동형 펌프

Search Result 15, Processing Time 0.019 seconds

Application of a Single-pulsatile Extracorporeal Life Support System for Extracorporeal Membrane Oxygenation -An experimental study - (단일 박동형 생명구조장치의 인공폐 적용 -실험연구-)

  • Kim, Tae-Sik;Sun, Kyung;Lee, Kyu-Baek;Park, Sung-Young;Hwang, Jae-Joon;Son, Ho-Sung;Kim, Kwang-Taik;Kim. Hyoung-Mook
    • Journal of Chest Surgery
    • /
    • v.37 no.3
    • /
    • pp.201-209
    • /
    • 2004
  • Extracorporeal life support (ECLS) system is a device for respiratory and/or heart failure treatment, and there have been many trials for development and clinical application in the world. Currently, a non-pulsatile blood pump is a standard for ECLS system. Although a pulsatile blood pump is advantageous in physiologic aspects, high pressure generated in the circuits and resultant blood cell trauma remain major concerns which make one reluctant to use a pulsatile blood pump in artificial lung circuits containing a membrane oxygenator. The study was designed to evaluate the hypothesis that placement of a pressure-relieving compliance chamber between a pulsatile pump and a membrane oxygenator might reduce the above mentioned side effects while providing physiologic pulsatile blood flow. The study was performed in a canine model of oleic acid induced acute lung injury (N=16). The animals were divided into three groups according to the type of pump used and the presence of the compliance chamber, In group 1, a non-pulsatile centrifugal pump was used as a control (n=6). In group 2 (n=4), a single-pulsatile pump was used. In group 3 (n=6), a single-pulsatile pump equipped with a compliance chamber was used. The experimental model was a partial bypass between the right atrium and the aorta at a pump flow of 1.8∼2 L/min for 2 hours. The observed parameters were focused on hemodynamic changes, intra-circuit pressure, laboratory studies for blood profile, and the effect on blood cell trauma. In hemodynamics, the pulsatile group II & III generated higher arterial pulse pressure (47$\pm$ 10 and 41 $\pm$ 9 mmHg) than the nonpulsatile group 1 (17 $\pm$ 7 mmHg, p<0.001). The intra-circuit pressure at membrane oxygenator were 222 $\pm$ 8 mmHg in group 1, 739 $\pm$ 35 mmHg in group 2, and 470 $\pm$ 17 mmHg in group 3 (p<0.001). At 2 hour bypass, arterial oxygen partial pressures were significantly higher in the pulsatile group 2 & 3 than in the non-pulsatile group 1 (77 $\pm$ 41 mmHg in group 1, 96 $\pm$ 48 mmHg in group 2, and 97 $\pm$ 25 mmHg in group 3: p<0.05). The levels of plasma free hemoglobin which was an indicator of blood cell trauma were lowest in group 1, highest in group 2, and significantly decreased in group 3 (55.7 $\pm$ 43.3, 162.8 $\pm$ 113.6, 82.5 $\pm$ 25.1 mg%, respectively; p<0.05). Other laboratory findings for blood profile were not different. The above results imply that the pulsatile blood pump is beneficial in oxygenation while deleterious in the aspects to high pressure generation in the circuits and blood cell trauma. However, when a pressure-relieving compliance chamber is applied between the pulsatile pump and a membrane oxygenator, it can significantly reduce the high circuit pressure and result in low blood cell trauma.

A Study on Shape Optimization and Hemolysis Evaluation of Axial Flow Blood Pump by Using Computational Fluid Dynamics Analysis (CFD해석을 이용한 축류형 혈액펌프의 용혈평가 및 형상개량에 관한 기초연구)

  • 김동욱;임상필
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.57-64
    • /
    • 2004
  • The non pulsation blood pump is divided into axial flow and centrifugal style according to the direction of inlet and outlet flow. An axial flow blood pump can be made smaller than a centrifugal blood pump because centrifugal pump's rpm is fewer than axial flow pump. Hemolysis is an important factor for the development of an axial flow blood pump. It is difficult to identify the areas where hemolysis occurs. Evaluation of hemolysis both in in-vitro and in-vivo test requires a long-time and more expensive. Computational fluid dynamics(CFD) analysis enables the engineer to predict hemolysis on a computer which just can get not only amount of htmolysis but also location of hemolysis. It takes shorter time and less expensive than in-vitro test. The purpose of this study is to git Computational fluid dynamics in axial flow pump and to verify the accuracy of prediction by the possibility of design comparing CFD results with in-vitro experimental results. Also, wish to figure out the correction method that can bring improvement in shape of axial flow blood pump using CFD analysis.

Comparison of Pulsatile and Non-Pulsatile Extracorporeal Circulation on the Pattern of Coronary Artery Blood Flow (체외순환에서 박동 혈류와 비박동 혈류가 관상동맥 혈류양상에 미치는 영향에 대한 비교)

  • Son Ho Sung;Fang Yong Hu;Hwang Znuke;Min Byoung Ju;Cho Jong Ho;Park Sung Min;Lee Sung Ho;Kim Kwang Taik;Sun Kyung
    • Journal of Chest Surgery
    • /
    • v.38 no.2 s.247
    • /
    • pp.101-109
    • /
    • 2005
  • Background: In sudden cardiac arrest, the effective maintenance of coronary artery blood flow is of paramount importance for myocardial preservation as well as cardiac recovery and patient survival. The purpose of this study was to directly compare the effects of pulsatile and non-pulsatile circulation to coronary artery flow and myocardial preservation in cardiac arrest condition. Material and Method: A cardiopulmonary bypass circuit was constructed in a ventricular fibrillation model using fourteen Yorkshire swine weighing $25\~35$ kg each. The animals were randomly assigned to group I (n=7, non-pulsatile centrifugal pump) or group II (n=7, pulsatile T-PLS pump). Extra-corporeal circulation was maintained for two hours at a pump flow of 2 L/min. The left anterior descending coronary artery flow was measured with an ultrasonic coronary artery flow measurement system at baseline (before bypass) and at every 20 minutes after bypass. Serologic parameters were collected simultaneously at baseline, 1 hour, and 2 hours after bypass in the coronary sinus venous blood. The Mann-Whitney U test of STATISTICA 6.0 was used to determine intergroup significances using a p value of < 0.05. Result: The resistance index of the coronary artery was lower in group II and the difference was significant at 40 min, 80 min, 100 min and 120 min (p < 0.05). The mean velocity of the coronary artery was higher in group II throughout the study, and the difference was significant from 20 min after starting the pump (p < 0.05). The coronary artery blood flow was higher in group II throughout the study, and the difference was significant from 40 min to 120 min (p < 0.05) except at 80 min. Serologic parameters showed no differences between the groups at 1 hour and 2 hours after bypass in the coronary sinus blood. Conclusion: In cardiac arrest condition, pulsatile extracorporeal circulation provides more blood flow, higher flow velocity and less resistance to coronary artery than non-pulsatile circulation.

Development of Portable Cardiopulmonary Support System (이동형 심폐보조시스템의 개발)

  • Lee, Hyuk-Soo;Min, Byoung-Goo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.1
    • /
    • pp.94-99
    • /
    • 2007
  • Many cases of acute cardiac shock and cardiac arrest in emergency room and ICU have been increasing. In this case, ECMO with centrifugal pump has been used generally. However, due to the heavy weight and big size, the system is not adequate for emergency cases. And other defects of this system are that membrane oxygenator's pressure is high and blood are exposed to the air. There was some tries of ECMO using pulsatile pump, but it was found that the weak point of these system is high peak pressure and hemolysis. The mechanism of twin pulsatile pump is that Membrane oxygenator Outlet Pump(MOP) make negative pressure when Membrane oxygenator Inlet Pump(MIP) provides high positive pressure, and the negative pressure will decrease positive pressure of Membrane Oxygenator. Our group analyzed this advantage through In-Vitro and 12 Cases In-Vivo test.

Blood Flow and Pressure Evaluation for a Pulsatile Conduit-Shaped Ventricular Assist Device with Structural Characteristic of Conduit Shape (관형의 구조적 특징을 갖춘 박동형 관형 심실보조장치의 혈류, 혈압 평가)

  • Kang, Seong-Min;Choi, Seong-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1191-1198
    • /
    • 2011
  • The use of a ventricular assist device (VAD) can raise the one-year survival rate without cardiac transplantation from 25% to 52%. However, malfunction of the VAD system causes 6% of VAD patients' deaths, which could possibly be avoided through the development of new VADs in which VAD malfunctions do not affect the patient's heart movement or hemodynamic state. A conventional VAD has an impeller or vane for propelling blood that can allow blood to regurgitate when the propelling force is weaker than the aortic pressure. In this paper, we developed a new pulsatile conduit-shaped VAD that has two valves. This device removes the possibility of blood regurgitation and has a small stationary area even when the pumping force is extremely weak. We estimated the characteristics of the device by measuring the outflow and the pressure of the pump in in-vitro and in-vivo experiments.

A Study of Impeller's Design and CFD Analysis for Axial Flow Blood Pump (축류형 혈액펌프 개발을 위한 임펠러의 설계 및 해석에 대한 연구)

  • 임상필;김동욱
    • Proceedings of the KAIS Fall Conference
    • /
    • 2002.11a
    • /
    • pp.193-196
    • /
    • 2002
  • 완전인공심장은 크게 정상류형과 박동류형이 있다. 정상류형 인공심장중 축류형 혈액펌프는 기구가 간단하고 비용적형이기 때문에 소형화가 가능한 장점이 있지만, 가동중 발생하는 난류로 인해 용혈현상이 따른다는 단점이 있다. 이 용혈의 형성과정은 실제와 가까운 모의실험을 하지 않고서는 알 수가 없다. 따라서 본 연구에서는 모의 실험단계를 거치지 않고 유한요소해석에 의한 난류평가를 통하여 용혈지수가 가장 낮은 임펠러의 형상을 연구하였다. 난류해석 결과, vane매수가 적을 경우 상대적으로 용혈지수가 낮게 나타나는 것을 알 수 있었으나 vane매수가 적을 경우에는 일정한 출구유량을 얻기 위해 임펠러의 고속회전 이 필요하며 이에 따른 난류에너지가 발생, 높은 용혈지수가 예상되므로 본 논문에서는 vane매수 4매-6매 중 6000-7000rpm의 회전속도사이의 조건으로 설계된 임펠러의 모델이 적당한 것으로 예측할 수 있었다.

A Study of Optimal Model for the Circuit Configuration of Korean Pulsatile Extracorporeal Life Support System (T-PLS) (한국형 박동식 생명구조장치(T-PLS) 순환회로를 위한 최적화 모델 연구)

  • Lim Choon Hak;Son Ho Sung;Lee Jung Joo;Hwang Znuke;Lee Hye Won;Kim Kwang Taik;Sun Kyung
    • Journal of Chest Surgery
    • /
    • v.38 no.10 s.255
    • /
    • pp.661-668
    • /
    • 2005
  • Background: We have hypothesized that, if a low resistant gravity-flow membrane oxygenator is used, then the twin blood sacs of TPLS can be located at downstream of the membrane oxyenator, which may double the pulse rate at a given pump rate and increase the pump output. The purpose of this study was to determine the optimal configuration for the ECLS circuits by using the concept of pulse energy and pump output. Material and Method: Animals were randomly assigned to 2 groups in a total cardiopulmonary bypass model. In the serial group, a conventional membrane oxygenator was located between the twin blood sacs. In the parallel group, the twin blood sacs were placed downstream of the gravity-flow membrane oxygenator. Energy equivalent pressure (EEP) and pump output were collected at pump-setting rates of 30, 40, and 50 BPM. Result: At the given pump-setting rate, the pulse rate was doubled in the parallel group. Percent changes of mean arterial pressure to EEP were $13.0\pm1.7,\; 12.0\pm1.9\;and\;7.6\pm0.9\%$ in the parallel group, and $22.5\pm2.4,\; 23.2\pm1.9,\;and\;21.8\pm1.4\%$ in the serial group at 30, 40, and 50 BPM of pump-setting rates. Pump output was higher in the parallel circuit at 40 and 50 BPM of pump-setting rates $(3.1\pm0.2,\;3.7\pm0.2L/min\;vs.\;2.2\pm0.1\;and\;2.5\pm0.1L/min,\;respectively,\;p=0.01)$. Conclusion: Either parallel or serial circuit configuration of the ECLS generates effective pulsatility. As for the pump out, the parallel circuit configuration provides higher flow than the serial circuit configuration.

Extracorporeal Life Support with a Twin-pulse Life Support (T-PLS) System (이중 박동성 인공심폐기(Twin-Pulse Life Support, T-PLS)를 이용한 심폐순환보조)

  • Lee, Dong-Hyup;Lee, Jang-Hoon;Jung, Tae-Eun
    • Journal of Chest Surgery
    • /
    • v.40 no.7 s.276
    • /
    • pp.512-516
    • /
    • 2007
  • A mechanical circulatory support system is a life-saving option for treating acute severe respiratory failure or cardiac failure. There are currently a few types of assist devices and the Twin-Pulse Life Support (T-PLS) system is a kind of pulsatile pump. We report here on three patients with severe life threatening cardiopulmonary dysfunction who had the T-PLS system used as an assist device. The indications for applying the T-PLS system were continuing respiratory or cardiac failure in spite of maximal ventilatory and inotropic support. There were two patients with acute respiratory failure due to infection and one patient with cardiac failure due to acute myocarditis. One respiratory failure patient and one cardiac failure patient survived after applying the T-PLS system for 3 days and 5 days, respectively. The T-PLS system is useful as an assist device and it should be considered before multi-organ failure occurs.

Short-term Mechanical Circulatory Support with Centrifugal Pump in Cardiac Arrest or Cardiogenic Shock - Report of 5 cases- (심정지 혹은 심인성 쇼크에서 원심성 펌프를 이용한 단기목표의 기계적 순환 보조)

  • 양희철;성기익;뱍계현;전태국;박표원;양지혁;이영탁
    • Journal of Chest Surgery
    • /
    • v.37 no.12
    • /
    • pp.1003-1009
    • /
    • 2004
  • Mechanical circulatory support (MCS) has been used for myocardium failure, but moreover, it may be essential for the life support in cardiac arrest or cardiogenic shock. Many commercial devices can be used effectively for the long-term support. However, there are some limitations in the aspects of the cost and technical support by production company. Short-term support with centrifugal type has been reported numerously with the purpose of bridging to heart transplantation or recovery. We successfully treated 5 patitents who were in the status of cardiogenic shock (n=3) or arrest (n=2) with the technique of extracorporeal life support system (ECLS) or left ventricular assist device (LVAD) using the centrifugal type pump. The MCS were performed emergently (n=2) under cardiac arrest caused by ischemic heart disease, and urgently (n=3) under cardiogenic shock with ischemic heart disease (n=1) or acute fulminant viral myocarditis (n=2). All patients were weaned from MCS. Complications related to the use of MCS were bleeding and acute renal failure, but there were no major complications related to femoral cannulations. Mechanical circulatory support may be essential for the life support and rescue in cardiac arrest or cardiogenic shock.

A Clinical Experience of Korean Artificial Heart(AnyHeart) (한국형 인공심장(AnyHeart)의 임상경험)

  • Sun, Kyung;Son, Ho-Sung;Jung, Jae-Seung;Chung, Bong-Kyu;Lee, Sung-Ho;Shin, Jae-Seung;Kim, Kwang-Taik;Lee, Hye-Won;Min, Byoung-Goo;Kim, Hyoung-Mook
    • Journal of Chest Surgery
    • /
    • v.35 no.7
    • /
    • pp.548-552
    • /
    • 2002
  • Korean artificial heart(AnyHeart) is a single-pieced and implantable hi-ventricular pulsaile pump adapting a moving actuator mechanism. The authors report a case of clinical application of AnyHeart as a life-saving device for the patients with end-stage heart disease combined with biventricular failure.