• Title/Summary/Keyword: 바텀애시 경량골재

Search Result 23, Processing Time 0.022 seconds

Fundamental Properties of Lightweight Concrete with Dry Bottom Ash as Fine Aggregate and Burned Artificial Lightweight Aggregate as Coarse Aggregate (건식 바텀애시 경량 잔골재와 소성 인공경량 굵은골재를 사용한 콘크리트의 기초 특성)

  • Choi, Hong-Beom;Kim, Jin-Man
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.267-274
    • /
    • 2018
  • Though the wet bottom ash has been used as a type of lightweight aggregate, dry bottom ash, new type bottom ash from coal combustion power plant, has scarcely researched. It is excellent lightweight aggregate in the view point of construction material. This study is performed to check the applicability of dry bottom ash as a fine aggregate in lightweight aggregate concrete, by analyzing various properties of fresh and hardened concrete. We get results that the slump of concrete is within the target range at less than 75% replacement rate of dry bottom ash, the air content is not affected by the replacement rate of dry bottom ash, the bleeding capacity is less than $0.025cm^3/cm^2$ at 75% under of the replacement rate of dry bottom ash, and the compressive strength of concrete show 90% or more comparing the base mix while initial strength development is a little low. Oven dry unit weight of concrete is reduced by 8.9% when replaced 100% dry bottom ash, and dry shrinkage tends to decrease depending on increase of replacement rate of dry bottom ash. Modulus of elasticity of concrete shows no decease at 50% over of the replacement rate of dry bottom ash, while modulus of elasticity of concrete decreases when the replacement rate increases further. The dry bottom ash, when used as a fine aggregate in lightweight concrete, can be used effectively without any deterioration in quality.

Characteristics of Thermal Conductivity of Concrete Containing Fine Bottom Ash Aggregates (바텀애시 경량골재를 사용한 콘크리트의 열전도율 특성)

  • Park, Ji-Hun;Jung, Hoe-Won;Yang, In-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.596-603
    • /
    • 2020
  • In this paper, an experimental study was conducted to investigate the applications of bottom ash, which is an industrial by-product obtained from thermal power plants. Bottom ash was used as fine aggregate in this study, and an experiment was conducted to determine the characteristics of the bottom ash aggregate. In addition, 25, 50, 75, and 100% contents of crushed (natural) fine aggregate were replaced with bottom ash aggregate to produce concrete mixture including bottom ash. Thereafter, test results of the unit weight, ultrasonic velocity, compressive strength, and thermal conductivity of bottom ash concrete were obtained. Moreover, the effect of the curing ages of 28 and 91 days on the material characteristics of bottom ash concrete were identified. Test results showed that bottom ash used as fine aggregate had pozzolanic reaction. Finally, based on the extensive experimental results, relationships between thermal conductivity and unit weight, ultrasonic velocity, and compressive strength was suggested.

Study on the Properties of Light-weight Concrete containing Bottom Ash as a part of Fine Aggregate (바텀애시를 잔골재로 사용한 경량콘크리트의 특성에 관한 연구)

  • Lee, Jin-Woo;Kwon, Hae-Won;Park, Hee-Gon;Kim, Yoo-Jin;Bae, Yeoun-Ki;Lee, Jae-Sam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.701-704
    • /
    • 2008
  • Actuality, amount of electric power is rising together with business expansion. But the most power plant is consisted a thermal power. People have been burning fuel like a coal, and it bring the cinder concrete. Fly-ash is use to the high-degree in construction material, but in case of bottom-ash had been disused the whole quantity. Intermittently, the academic world laid his studies for bottom-ash. Thus, this study contents are a characteristic of be not harden concrete incorporating fine aggregate, a strength of harden concrete, elastic modulus and a unit mass. And there do for the sake to examine utility value of bottom-ash and improve of light weight concrete.

  • PDF

Effect of Foam Volume ratio and Curing Temperature on Compressive Strength of Lightweight using Bottom Ash Aggregates (바텀애시 경량골재 콘크리트 압축강도에 대한 기포 혼입률 및 양생온도의 영향)

  • Lee, Kwang-Il;Yang, Keun-Hyeok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.168-169
    • /
    • 2019
  • This study examined the effect of foam volume ratio and curing temperature the air dry density and compressive strength of lightweight concrete using bottom ash. Test results showed that the lightweight concrete possessed the compressive strength of 3.4~22.7 MPa at the air dry density of 1,041~1,583 kg/m3.

  • PDF

Shape Improvement and Optimum Gradation of Dry Processed Bottom Ash for Lightweight Mortar (경량 모르터용 건식공정 바텀애시의 입형 개선 효과와 최적 입도)

  • Choi, Hong-Beom;Kim, Jin-Man;Sun, Jung-Soo;Han, Dong-Yeop
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.7-14
    • /
    • 2015
  • The aim of this research is suggesting dry processed bottom ash as a new and economical source of lightweight aggregate for mortar and concrete. The dry process of bottom ash is an advance method of water-free and no chloride because only cooled down by double dry conveyer belt systems. Furthermore, because of relatively slow cooling down process helps burning up the remaining carbon in bottom ash. Using this dry process bottom ash, to evaluate the feasibility of using as a lightweight aggregate for mortar and concrete, two-phase of experiments were conducted: 1) improving shape of the bottom ash, and 2) controlling grade of the bottom ash. From the first phase of experiment, additional abrasing process was conducted for round shape bottom ash, hence improved workability and compressive strength was achieved while unit weight was increased comparatively. Based on the better shape of bottom ash, from the second phase, various grades were adopted on cement mortar, standard grade showed the most favorable results on fresh and hardened properties. It is considered that the results of this research contribute on widening sustainable method of using bottom ash based on the dry process and increasing value of bottom ash as a lightweight aggregate for concrete.

Engineering Properties of Lightweight Aggregate Concrete Using Dry Bottom Ash as Coarse Aggregate (건식 바텀애시 굵은골재를 사용한 경량골재 콘크리트의 공학적 특성)

  • Sung, JongHyun;Sun, JungSoo;Choi, SunMi;Bok, YoungJae;Kim, JinMan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.166-167
    • /
    • 2013
  • Bottom ash, which is discharged through a wet process in a thermal power plant, contains much unburned coal due to quenching and much salt due to seawater. However, dry bottom ash discharged through a dry process contains low unburned coal and salt, and has light -weight due to many pores. Therefore, it is expected that it can be used as lightweight aggregate. This study deals with the basic properties of concrete used dry bottom ash as coarse aggregate. As a results, the concrete having high content of dry bottom ash aggregate showed high slump by using water reducing agent and its air content was within 5±1.5% as designed value, similarly to normal weight concrete. It also showed a lower compressive strength than 100% of crushed stone.

  • PDF

Properties of Fireproof Mortar Using Lightweight Fine Aggregate Using Air Cooling Process Bottom Ash (건식공정 바텀애시 경량 잔골재를 사용한 내화모르타르의 특성)

  • Kim, Myung-Hoon;Namkoong, Yeon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.225-226
    • /
    • 2016
  • Bottom ash generated in thermoelectric power plants could be used as substitutional fine aggregate such as pearlite of fireproof mortar due to its lightweight and porosity. Development of substitutional materials is necessary because pearlite has several problems such as production of carbon dioxide during manufacturing process and high price. This study is to confirm the possibility of air cooling process bottom ash for fireproof mortar as substitutional material of pearlite through basic experiment.

  • PDF

Evaluation of Compressive Strength of Lightweight Aggregate Concrete using Bottom Ash Aggregates and Air Foam (기포가 혼입된 바텀애시 골재 경량 콘크리트의 압축강도 평가)

  • Lee, Kwang-Il;Yang, Keun-Hyeok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.112-113
    • /
    • 2018
  • The present feasible tests are to develop the lightweight concrete using bottom ash aggregates and performed air foam for applying to sustainable high-insulation panel. The main variables investigated are water-to-binder, foam volume ratio, and curing conditions. Test results showed that the lightweight concrete possessed the compressive strength of 5~9 MPa at the air dry density of 951~1,139 kg/m3.

  • PDF

Mix Design Procedure of Structural Concrete Using Artificial Lightweight Aggregates Produced from Bottom Ash and Dredged Soils (바텀애시 및 준설토 기반의 인공 경량골재를 활용한 구조용 콘크리트의 배합설계 절차)

  • Lee, Kyung-Ho;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.2
    • /
    • pp.133-140
    • /
    • 2018
  • The objective of this study is to propose a reliable mixing design procedure of concrete using artificial lightweight aggregate produced from expanded bottom ash and dredged soil. Based on test results obtained from 25 mixes, empirical equations to determine water-to-cement ratio, unit cement content, and replacement level of lightweight fine aggregates were formulated with regard to the targeted performance (compressive strength, dry density, initial slump, and air content) of lightweight aggregate concrete. From the proposed equations and absolute volume mixing concept, unit weight of each ingredient was calculated. The proposed mix design procedure limits the fine aggregate-to-total aggregate ratio by considering the replacement level of lightweight fine aggregates, different to previous approach for expanded fly ash and clay-based lightweight aggregate concrete. Thus, it is expected that the proposed procedure is effectively applied for determining the first trial mixing proportions for the designed requirements of concrete.