• Title/Summary/Keyword: 바이모달 음성인식

Search Result 11, Processing Time 0.036 seconds

Bi-modal speech recognition in noisy environments (잡음환경에서의 바이모달 음성인식)

  • 박병구
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06c
    • /
    • pp.111-114
    • /
    • 1998
  • 기존의 음성인식시스템의 잡음환경에서 인식률의 한계를 극복하기 위해 음성신호뿐만이 아니라 입술정보를 결합하여 음성인식에 이용하여 바이모달(Bi-modal) 음성인식이 근래에 제안되어지고 있다. 그래서 바이모달 음성인식 시스템을 실제로 구현해보고 인식 실험을 수행해 보았다. 입술영상은 이미지에 근거한 입술모양을 파라메터화하여 인식실험에 사용하였으며 음성과 입술영상을 각각 인식한 후 인식스코어(Score)에 가중치를 적용하여 통합하는 방법을 사용하였다. 마지막으로 바이모달 음성인식의 잡음환경에서의 성능을 알아보기 위해 음성신호에 여러 레벨의 잡음을 섞어서 실험을 하고 잡음환경에서 인식률의 한계를 입술정보를 이용하여 극복할 수 있다는 것을 보이고자 한다.

  • PDF

Lip Detection using Color Distribution and Support Vector Machine for Visual Feature Extraction of Bimodal Speech Recognition System (바이모달 음성인식기의 시각 특징 추출을 위한 색상 분석자 SVM을 이용한 입술 위치 검출)

  • 정지년;양현승
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.4
    • /
    • pp.403-410
    • /
    • 2004
  • Bimodal speech recognition systems have been proposed for enhancing recognition rate of ASR under noisy environments. Visual feature extraction is very important to develop these systems. To extract visual features, it is necessary to detect exact lip position. This paper proposed the method that detects a lip position using color similarity model and SVM. Face/Lip color distribution is teamed and the initial lip position is found by using that. The exact lip position is detected by scanning neighbor area with SVM. By experiments, it is shown that this method detects lip position exactly and fast.

Design and Implementation of Bimodal System using Face and Audio (얼굴과 음성 정보를 이용한 바이모달 시스템 설계 및 구현)

  • Kim, Myung-Hun;Lee, Chi-Geun;Jung, Sung-Tae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.11a
    • /
    • pp.701-704
    • /
    • 2005
  • 최근 들어 바이모달 인식에 관한 연구가 활발히 진행되고 있다. 본 논문에서는 음성과 얼굴을 이용하여 바이모달 시스템을 구현하였다. 얼굴인식은 객체 분류 기법인 SVM을 이용하여 얼굴을 검출 및 인식하였으며, 음성인식은 HMM을 이용하여 음성인식을 하였다. 각기 인식된 결과에 대해 합성을 통하여 잡음에 의해 낮아지는 음성 인식률을 얼굴 인식과 같이 사용함으로서, 전체적인 인식률 향상을 볼 수 있다.

  • PDF

Robust Endpoint Detection for Bimodal System in Noisy Environments (잡음환경에서의 바이모달 시스템을 위한 견실한 끝점검출)

  • 오현화;권홍석;손종목;진성일;배건성
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.5
    • /
    • pp.289-297
    • /
    • 2003
  • The performance of a bimodal system is affected by the accuracy of the endpoint detection from the input signal as well as the performance of the speech recognition or lipreading system. In this paper, we propose the endpoint detection method which detects the endpoints from the audio and video signal respectively and utilizes the signal to-noise ratio (SNR) estimated from the input audio signal to select the reliable endpoints to the acoustic noise. In other words, the endpoints are detected from the audio signal under the high SNR and from the video signal under the low SNR. Experimental results show that the bimodal system using the proposed endpoint detector achieves satisfactory recognition rates, especially when the acoustic environment is quite noisy.

Effects of Extraction Method and Choice of Lip Parameters on the Bi-modal Speech Recognition (입술정보추출 및 파라미터 선정 방법에 따른 바이모달 음성인식 성능 비교)

  • 박병구
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06e
    • /
    • pp.347-350
    • /
    • 1998
  • 음성신호와 영상신호를 함께 이용하는 바이모달(Bi-modal)음성인식에서 어떤 입술 파라미터를 사용하는가에 따라 인식시스템의 성능이 달라진다. 그래서 본 논문에서는 이미지에 근거한 입술파라미터를 견인하게 추출하기 위한 방법으로 x 프로파일(profile)을 이용한 방법을 사용하였다. 파라미터를 선정을 달리하여 실험한 결과 15dB이상에서는 안쪽입술의 2개의 파라미터를 이용한 경우가, 10dB이하에서는 4개의 입술파라미터를 이용한 경우가 더 좋은 인식률을 보였다. 안쪽 입술 파라미터를 이용한 경우가 바깥쪽 입술 파라미터를 이용한 경우보다 더 좋은 인식률을 보였다.

  • PDF

Performance Comparison and Verification of Lip Parameter Selection Methods in the Bimodal Speech ]Recognition System (입술 파라미터 선정에 따른 바이모달 음성인식 성능 비교 및 검증)

  • 박병구;김진영;임재열
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.68-72
    • /
    • 1999
  • The choice of parameters from various lip information and the robustness of extracting lip parameters play important roles in the performance of bimodal speech recognition system. In this paper, lip parameters are extracted by using an automatic extraction algorithm and inner lip parameters effect on the recognition rate more than outer lip parameters. Compared with a manual extraction algorithm, the automatic extraction method is evaluated about its robustness.

  • PDF

Design and Implementation of a Bimodal User Recognition System using Face and Audio (얼굴과 음성 정보를 이용한 바이모달 사용자 인식 시스템 설계 및 구현)

  • Kim Myung-Hun;Lee Chi-Geun;So In-Mi;Jung Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.5 s.37
    • /
    • pp.353-362
    • /
    • 2005
  • Recently, study of Bimodal recognition has become very active. In this paper we propose a Bimodal user recognition system that uses face information and audio information. Face recognition consists of face detection step and face recognition step. Face detection uses AdaBoost to find face candidate area. After finding face candidates, PCA feature extraction is applied to decrease the dimension of feature vector. And then, SVM classifiers are used to detect and recognize face. Audio recognition uses MFCC for audio feature extraction and HMM is used for audio recognition. Experimental results show that the Bimodal recognition can improve the user recognition rate much more than audio only recognition, especially in the Presence of noise.

  • PDF

Comparison of Integration Methods of Speech and Lip Information in the Bi-modal Speech Recognition (바이모달 음성인식의 음성정보와 입술정보 결합방법 비교)

  • 박병구;김진영;최승호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.31-37
    • /
    • 1999
  • A bimodal speech recognition using visual and audio information has been proposed and researched to improve the performance of ASR(Automatic Speech Recognition) system in noisy environments. The integration method of two modalities can be usually classified into an early integration and a late integration. The early integration method includes a method using a fixed weight of lip parameters and a method using a variable weight according to speech SNR information. The 4 late integration methods are a method using audio and visual information independently, a method using speech optimal path, a method using lip optimal path and a way using speech SNR information. Among these 6 methods, the method using the fixed weight of lip parameter showed a better recognition rate.

  • PDF

Time domain Filtering of Image for Lip-reading Enhancement (시간영역 이미지 필터링에 의한 립리딩 성능 향상)

  • Lee Jeeeun;Kim Jinyoung;Lee Joohun
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.45-48
    • /
    • 2001
  • 립리딩은 잡음 환경 하에서 음성 인식 성능을 향상을 위해 영상정보를 이용한 바이모달(bimodal)음성인식으로 연구되었다[1][2]. 그 일환으로 이미 영상정보를 이용한 립리딩은 구현되었다. 그러나 현재까지의 시스템들은 환경의 변화에 강인하지 못하다. 본 논문에서는 이미지 기반 립리딩 방법을 적용하여 입술 영역을 보다 안정적으로 찾아 성능을 향상 시켰다. 그러나 이 방법은 많은 데이터량을 처리해야 하므로 전처리 과정이 필요하다. 전처리로 입력영상을 그레이 레벨로 변환하는 방법과, 입술을 반으로 접는 방법, 그리고 주성분 분석(PCA: Principal Component Analysis)을 사용하였다. 또한 인식성능 향상을 위해 음성에서 잡음 제거나 분석$\cdot$합성에 효과적인 성능을 보이는 RASTA(Relative Spectral)필터를 적용하여 시간 영역에서의 변화가 적은 성분이나 급변하는 성분, 그 밖의 잡음 등을 제거하였다. 그 결과 $72.7\%$의 높은 인식 성능을 보였다.

  • PDF

Estimation of speech feature vectors and enhancement of speech recognition performance using lip information (입술정보를 이용한 음성 특징 파라미터 추정 및 음성인식 성능향상)

  • Min So-Hee;Kim Jin-Young;Choi Seung-Ho
    • MALSORI
    • /
    • no.44
    • /
    • pp.83-92
    • /
    • 2002
  • Speech recognition performance is severly degraded under noisy envrionments. One approach to cope with this problem is audio-visual speech recognition. In this paper, we discuss the experiment results of bimodal speech recongition based on enhanced speech feature vectors using lip information. We try various kinds of speech features as like linear predicion coefficient, cepstrum, log area ratio and etc for transforming lip information into speech parameters. The experimental results show that the cepstrum parameter is the best feature in the point of reconition rate. Also, we present the desirable weighting values of audio and visual informations depending on signal-to-noiso ratio.

  • PDF