• Title/Summary/Keyword: 밑변

Search Result 16, Processing Time 0.026 seconds

A Study on the Characteristics of Wing Tip Shapes for Induce Drag Reduction (유도항력 감소를 위한 날개끝 형상 특성에 관한 연구)

  • Sheen, Dong-Jin;Lee, Bong-Joon;Hong, Soon-Shin;Kim, Choong-Hee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.3 no.1
    • /
    • pp.81-95
    • /
    • 1995
  • 공기의 흐름 중에 있는 유한 날개의 끝에서는 날개끝 와류로 인하여 날개에 내리흐름(downwash)이 발생하게 된다. 이러한 내리흐름은 유도항력을 발생시켜 양항특성이 감소하게 된다. 따라서 날개끝 와류를 적절히 제어하면 어느 정도 유도항력을 감소시킬 수 있다. 본 논문에서는 직사각형 날개와 테이퍼형 날개 끝에 여러 가지 형상의 strake를 장착하거나, 날개끝 와류를 제어하기 위하여 여러 개의 slot을 형성시켰을 때의 양항특성을 실험 및 수치해석으로 연구한 결과를 기술하였다. 실험결과 직사각형 날개끝에 장착한 wing tip strake의 밑변을 바깥쪽으로 절단한 wing tip strake의 양항특성이 받음각 $8^{\circ}$ 이상에서 우수하였고, 반면에 밑변을 절단하지 않은 경우는 받음각 $0^{\circ}\;^{\sim}\;8^{\circ}$ 사이에서 기본날개보다 양항비가 증가하였다. 테이퍼형 날개끝에 wing tip strake를 장착하였을 때의 양항비는 받음각 전 범위에 걸쳐 기본날개보다 증가하였으며, 받음각$8^{\circ}$ 이상에서 wing tip strake의 밑변을 절단하지 않은 wing tip strake의 양항특성이 우수하였다. 방사형 다중슬롯의 경우 날개끝의 앞전보다 뒷전 쪽에 형성시키는 것이 양항비특성이 우수하였다.

  • PDF

An Analysis on the Concept and Measuring Activities of the Height of Figures in Elementary School Mathematics Textbooks2 (초등학교 수학 교과서에 서술된 높이 개념과 측정 활동 분석)

  • Paek, Dae Hyun
    • Education of Primary School Mathematics
    • /
    • v.19 no.2
    • /
    • pp.113-125
    • /
    • 2016
  • The concept and measuring activities of the height of figures are essential to find the areas or volumes of the corresponding figures. For plane figures, the height of a triangle is defined to be the line segment from a vertex that is perpendicular to the opposite side of the triangle, whereas the height of a parallelogram(trapezoid) is defined to be the distance between two parallel sides. For the solid figures, the height of a prism is defined to be the distance of two parallel bases, whereas the height of a pyramid is defined to be the perpendicular distance from the apex to the base. In addition, the height of a cone is defined to be the length of the line segment from the apex that is perpendicular to the base and the height of a cylinder is defined to be the length of the line segment that is perpendicular to two parallel bases. In this study, we discuss some pedagogical problems on the concepts and measuring activities of the height of figures to provide alternative activities and suggest their educational implications from a teaching and learning point of view.

A Study on the Design of Dual­Band Equilateral­Triangular Microstrip Antennas (듀얼­밴드 정삼각형 마이크로스트립 안테나 설계에 관한 연구)

  • 문정군;이종철;황호순;이문수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.8
    • /
    • pp.1604-1611
    • /
    • 2003
  • For dual­band operation, it can be done by loading two pair of slits in the equilateral­triangular patch, one embeded close to the side edges of the patch and the other inserted at the bottom edge of the patch. The frequency ratio of the two operating frequencies can be tuned by varing the positions and lengths of the inserted slots at the bottom edge of the patch. While the calculated frequency ratio of the antenna by Ensemble 5.0 is $1.66 ({f_10}=1.928GHz, {f_20}=3.2GHz)$, the measured one is 2.04 $({f_10}=1.6806 GHz, {f_20}=3.435 GHz)$. The error in the frequency ratio is due on the fabrication dimension and feeding position error as well as on the permittivity dispersion effect.

A Study on the Understanding of the Base Area of Solid Figures in the Elementary Mathematics (초등수학에서 입체도형의 밑넓이 이해에 대한 연구)

  • Kim, Sung Joon
    • Journal of the Korean School Mathematics Society
    • /
    • v.17 no.2
    • /
    • pp.167-191
    • /
    • 2014
  • In this study, we investigate the term-sets of 'base' or 'bottom': 'the bottom side of a polygon' and 'the base side (of a geometrical figure)'. And we study the concept of 'the base area' in the solid figures and the formula of 'the bottom dimensions'. We start from the 6th grade math problem: 'Find the bottom dimension of the rectangular.' The primary answer is that it does not use the term('the bottom dimensions') in the elementary mathematics. However, in the middle school mathematics, 'the base area' is used as means of 'the area of one bottom side', which is not explained anywhere from the elementary mathematics to middle school mathematics. In addition, the base is defined and 'the surface area' and 'the side area' is taught in the elementary mathematics, so we naturally think of 'the base area'. Therefore we first investigate the term-sets of 'base' or 'bottom' which has two elements: 'the bottom side of a polygon' and 'the base side (of a geometrical figure)'. Next we discuss 'the base area' through curriculum and textbooks, dictionary definitions and so on. In addition, we survey pre-service teachers and teachers about the solid figures and analyse the understanding of 'the base side' and 'the base area' comparatively. In particular, we compare the changes and the tendency of correct answers from the first question to the last question. As a result, we verify 'the cognitive gap' between the elementary mathematics and the middle school mathematics, we suggest the teaching of 'the base area' and succession subjects to teach figure domain in the elementary mathematics.

  • PDF

Properties of Triangle-Shaped Fuzzy Membership Function (삼각 퍼지 멤버쉽함수의 특성)

  • 이규택;이장규
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.15-20
    • /
    • 1995
  • Fuzzy membership functions are some kinds of mapping function for the fuzzification and the defuzzification. Triangle-shaped fuzzy membership functions are widely used in fuzzy controller, for it is easy to implement. In these membership functions, it is known that narrower fuzzy sets permit finer control near the operating point than that far from the operating point. $Supp{\acute{o}}se$ we have a membership function with narrower triangle near zero and wider triangle far from zero. The membership function will make fine control when small input is given and rough control at large input. Therefore the performance of the controller with that membership function will be enhanced. This paper presents how the width of triangle base in the fuzzy membership function has influence on the output using geometrical approaches.

  • PDF

Review on Teaching of Measuring the Area of Plane Figures (평면도형의 넓이 측정 지도에 대한 고찰)

  • Kim, Jeong-Ha;Kang, Moon-Bong
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.15 no.3
    • /
    • pp.509-531
    • /
    • 2011
  • This study is to determine if teaching of measuring the area of plane figures in elementary school is successful. While they teach to measure the area of figures in elementary school, students don't measure the segment of the figure directly until now. The figures are presented with auxiliary line and numerical information. When students measure the area of such figure, they do only substitute the number and calculate it. This study found that such teaching is not successful and propose the new teaching method of measuring the plane figures.

  • PDF

Height Recognition of The Object with The Unaided Eye (육안으로 대상체의 높이 인식)

  • Shin, Seong-Yoon;Jang, Dai-Hyun;Shin, Kwang-Seong;Lee, Hyun-Chang;Rhee, Yang-Won
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.06a
    • /
    • pp.315-316
    • /
    • 2011
  • 수학 함수 중에서 삼각함수는 그 활용도가 매우 높아서 아주 많이 사용되는 함수 중 하나이다. 직각 삼각형의 직각이 아닌 한 각의 크기를 a라 하면, 이 삼각형의 임의의 두 변의 길이의 비는 이 각 a의 크기에 의하여 결정되므로 이 비를 이각의 삼각 함수라 하였다. 즉, 삼각함수는 직각삼각형에서 한 각의 크기가 일정하면, 이들 변의 비의 값은 삼각형의 크기에는 관계없이 일정하다는 가장 단순하고 독특한 성질에 기초를 둔 학문이다. 어떠한 대상체의 높이는 직삼각형의 밑변의 길이와 건물을 올려다본 각이 있다면 삼각함수를 이용하여 쉽게 구할 수 있다.

  • PDF

Children's Understanding of Relations in the Formulas for the Area of Rectangle, Parallelogram, and Triangle (직사각형, 평행사변형, 삼각형 넓이 공식에 내재된 관계에 대한 초등학생들의 이해 조사)

  • Jeong, Gyeong-Soon;Yim, Jae-Hoon
    • Journal of Educational Research in Mathematics
    • /
    • v.21 no.2
    • /
    • pp.181-199
    • /
    • 2011
  • The area formula for a plane figure represents the relations between the area and the lengths which determine the area of the figure. Students are supposed to understand the relations in it as well as to be able to find the area of a figure using the formula. This study investigates how 5th grade students understand the formulas for the area of triangle, rectangle and parallelogram, focusing on their understanding of functional relations in the formulas. The results show that students have insufficient understanding of the relations in the area formula, especially in the formula for the area of a triangle. Solving the problems assigned to them, students developed three types of strategies: Substituting numbers in the area formula, drawing and transforming figures, reasoning based on the relations between the variables in the formula. Substituting numbers in the formula and drawing and transforming figures were the preferred strategies of students. Only a few students tried to solve the problems by reasoning based on the relations between the variables in the formula. Only a few students were able to aware of the proportional relations between the area and the base, or the area and the height and no one was aware of the inverse relation between the base and the height.

  • PDF

Height Recognition of Building Using Trigonometric Function (삼각함수를 이용한 건물 높이 인식)

  • Shin, Seong-Yoon;Baek, Jeong-Uk;Lee, Hyun-Chang;Rhee, Yang-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.641-642
    • /
    • 2010
  • Trigonometric functions is the study based on the most simple and unique properties of right triangle that if an angular size was settled, the value of the ratio of these sides is constant regardless of the size of the triangle. If it is the angle of right triangle with the length of the lower base and the measured angle of building, the height of the building can be obtained by using trigonometry. it is considered as a good way to gauge the height of the building as the car moves.

  • PDF

Flow resistance characteristics of tree trunk rips (나무줄기 돌출줄눈의 흐름저항 특성)

  • Park, Ho kook;Park, Sang Deog;Shin, Seung Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.137-137
    • /
    • 2019
  • 돌출줄눈은 산지하천의 만곡부의 빠른 유속을 감소시키기 위하여 활용된다. 본 연구에서는 친환경 디자인의 나무줄기 돌출줄눈(Tree Trunk Rip, TTR)과 사다리꼴 돌출줄눈(Trapezoid Rip, TR)의 흐름저항을 비교 분석하기 위하여 개수로 수리실험을 수행하였다. 실험은 길이 9m, 폭이 0.6m이며 경사가 0.0035로 고정된 개수로의 한쪽 측벽에 돌출줄눈을 설치하여 진행하였다. 사다리 꼴 돌출줄눈의 형상은 밑변 각이 $63^{\circ}$이며 무차원 설치간격 ${\lambda}_{nv}$가 6, 9, 12인 경우이다. 나무줄기 돌출줄눈의 기본 형상은 사다리꼴이고 표면은 나무껍질 무늬이며 ${\lambda}_{nv}$가 약 10이다. 나무줄기 돌출줄눈의 간격은 사다리꼴 돌출줄눈의 최적 설치 간격 9~12배 범위에 해당되고 평균 마찰계수는 사다리꼴 돌출줄눈의 9~12배의 평균 마찰계수 범위에 포함되었다. 사다리꼴 돌출줄눈의 ${\lambda}_{nv}$가 9, 12일 때의 전체 저항에 대한 형상저항의 비는 평균 $69.4{\pm}5.8%$였으며 나무줄기 돌출줄눈은 $70.2{\pm}2.1%$로 사다리꼴 돌출줄눈과 유사하다. 산지하천 흐름저항을 위한 돌출줄눈 설치에 있어 친환경적 디자인을 고려한 나무줄기가 사다리꼴 돌출줄눈보다 활용도가 클 것으로 기대된다.

  • PDF