• Title/Summary/Keyword: 미이용 열에너지

Search Result 10, Processing Time 0.035 seconds

A Study on Residents' Acceptance of Unutilized Heat in District Heating (미활용 열에너지의 집단에너지 주민 수용성에 관한 연구)

  • Doo Hwan Won;Saesin Oh
    • Environmental and Resource Economics Review
    • /
    • v.32 no.3
    • /
    • pp.191-215
    • /
    • 2023
  • This study focuses on evaluating and comparing residents' acceptance of unutilized heat such as hydrothermal energy and waste heat from waste incineration and data centers in the case that they are used as district heat sources. This is because securing residents' acceptance is significantly important in order for unutilized heat to be considered as a heat source of district heating and cooling to achieve neutrality in the heating and cooling sector. A survey of heating consumers' perception on unutilized heat energy is conducted and a conjoint model is used to analyze the willingness to pay of heating consumers on incineration heat, water heat, and data center waste heat and to compare them with existing gas heat sources. As a result of the analysis, it is confirmed that district heating using hydrothermal energy and data center waste heat is preferred to district heating from heat from a natural gas plant or waste incineration.

Compact Binary Power plant using unused thermal energy and Neural Network Controllers (미이용 열에너지를 이용한 소형 바이너리 발전과 신경망 제어기)

  • Han, Kun-Young;Jeong, Seok-Chan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.557-560
    • /
    • 2021
  • In the face of the COVID-19 pandemic, the Korean Government announced the Korean New Deal as a national development strategy to overcome the economic recession from the pandemic crisis and lead the global action aginst sturctural changes. The Green New Deal related with the energy aims to achieve net-zero emissions and accelerates the transition towards a low-carbon and green economy. To this end, the government plans to promete an increased use of renewable energy in the the society at large. This paper introduces a compact-binary power plant using unused thermal energy and a control system based on Neural Network in order to accelerate the transition towards a low-carbon and green economy. It is expected that he compact-binary power plant accelerate introduction of renewable energy along with solar and wind power.

  • PDF

Binary Power plant using unused thermal energy and Neural Network Controllers (미활용 열에너지를 이용한 바이너리 발전과 신경망 제어)

  • Han, Kun-Young;Park, Sung-Dae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.10
    • /
    • pp.1302-1309
    • /
    • 2021
  • Recently, the Korean Government announced the Korean New Deal as a national development strategy to overcome the economic recession from the pandemic crisis and lead the global action against structural changes. In the Korean New Deal, the Green New Deal related with the energy aims to achieve net-zero emissions and accelerates the transition towards a low-carbon and green economy. To this end, the government plans to promote an increased use of renewable energy in the society at large. This paper introduces a binary power generation using unused low-grade thermal energy to accelerate the transition towards a low-carbon and green economy and examines a control system based on Neural Network which is capable maintenance at low-cost by an unmanned automated operation in actual power generation environment. It is expected that the realization of binary power generation accelerates introduction of renewable energy along with solar and wind power.

Case-study of the technological trajectory through the technology-product-industry road map -CDRS technology of using Unutilized Energy (기술-제품-산업연관도를 이용한 기술 경로의 사례조사 -CDRS의 미활용 에너지 이용 기술)

  • 전지훈;안은영;허은녕
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2003.05a
    • /
    • pp.613-616
    • /
    • 2003
  • 우리나라의 에너지 수요면에서 살펴보면 가정 및 상업부문은 냉난방, 급탕용 에너지수요의 급증으로 높은 증가율을 보일 전망이다. 냉난방, 급탕용 에너지수요는 10$0^{\circ}C$ 미만의 비교적 중저온이며, 이러한 열수요에 대해 수백도에서 천도 이상의 온도를 얻을 수 있는 화석연료의 연소에 의해 공급하는 것은 에너지ㆍ환경면에서 불합리하다. 또한 도시지역내에서 외부로 배출되고 있는 각종 온도의 열에너지는 도시환경의 저해하고 있어, 에너지절약과 도시환경을 위해 미활용에너지의 이용에 대한 관심이 증가하였다.(중략)

  • PDF

A Basic Experimental Study on the Heat Energy Harvesting for Green SOC (녹색 사회기반시설의 열 에너지 하베스팅을 위한 기초실험 연구)

  • Jo, Byung-Wan;Lee, Duk-Hee;Lee, Dong-Yoon;Kim, Yoon-Ki
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.93-101
    • /
    • 2010
  • As the number of indispensable needs of clean energy increases due to the green new deal revolution, the possibility of heat energy harvesting from the surrounding infrastructures such as a railroad or highway was verified. In order to find more efficient usage of a heat source, the possibility of transforming heat into electricity were confirmed using Bi-Te type thermoelectric element, and electrical quality were tested with experiments of different heat source and environmental change in the surrounding infrastructures. After careful experiments, the possibility of collecting thermal energy and findings of the heat temperature change in infrastructrue are verified with a result of obtaining almost 20.82W in 70 celcius($^{\circ}C$) temperature differences and $1m^2$ surface area. Consequently, the ratio of heat temperatiure change and transforming surface area is the most crucial factor in the harvesting heat energy, and reducing thermal loss and improving thermal convection as well as transformation efficiency of thermoelectric element is required to get more efficient and durable generation.

Microwave와 Solution ZrO2를 이용한 Metal-Oxide-Semiconductor-Capacitor 제작

  • Lee, Seong-Yeong;Kim, Seung-Tae;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.206.1-206.1
    • /
    • 2015
  • 최근에 금속산화물을 증착하는 방법으로 용액공정이 주목 받고 있다. 용액 공정은 대기압에서 매우 간단한 방법으로 복잡한 공정과정을 요구하지 않기 때문에 박막을 경제적으로 간단하게 형성할 수 있다. 하지만 용액공정을 통해 형성한 박막에는 소자의 특성을 열화 시키는 solvent와 탄소계열의 불순물을 많이 포함하고 있어 고온의 열처리가 필수적이다. 박막의 품질을 향상시키기 위해서 다양한 열처리 방법들이 이용되고 있으며, 일반적인 열처리 방법으로는 furnace를 이용한 conventional thermal annealing (CTA)이 많이 이용되고 있다. 하지만, 최근에는 microwave를 이용한 공정이 주목 받고 있다. Microwave energy는 CTA보다 효과적으로 비교적 낮은 온도에서 높은 열처리 효과를 나타낸다. 본 실험은 n-type Silicon 기판에 solution-ZrO2 산화막을 형성 후, oven baking을 한 뒤, CTA와 microwave를 이용하여 solvent와 불순물을 제거 하였다. 전기적 특성을 확인하기 위해 solution ZrO2 산화막 위에 E-beam evaporator를 이용해 Ti 금속 전극을 증착하여 Metal-Oxide-Semiconductor (MOS) capacitor를 제작하였다. 다음으로, PRECISION SEMICONDUCTOR PARAMETER ANALYZER (4156B)를 이용하여, capacitance-voltage (C-V) 특성 및 current-voltage (I-V) 특성을 비교하였다. 다음으로, CTA를 통하여 제작한 소자와 전기적 특성을 비교하였다. 그 결과, Microwave irradiation으로 열처리한 MOS capacitor 소자에서 capacitance 값과 flat band voltage, hysteresis 등이 개선되는 효과를 확인하였다. Microwave irradiation 열처리는 100oC 미만의 온도에서 공정이 이루어짐에도 불구하고 시료 내에서의 microwave 에너지의 흡수가 CTA 공정에서의 열에너지 흡수보다 훨씬 효율적으로 이루어지며, 결과적으로 ZrO2 용액의 불순물과 solvent를 낮은 온도에서 제거하여 고품질 박막 형성에 매우 효과적이라는 것을 나타낸다. 따라서, microwave irradiation 열처리 방법은 비정질 산화막이 포함되는 박막 transistor 소자 제작에 대하여 결정적인 열처리 방법이 될 것으로 기대한다.

  • PDF

Development and Validation of Inner Environment Prediction Model for Glass Greenhouse using CFD (CFD를 이용한 유리온실 내부 환경 예측 모델 개발 및 검증)

  • Jeong, In Seon;Lee, Chung Geon;Cho, La Hoon;Park, Sun Yong;Kim, Min Jun;Kim, Seok Jun;Kim, Dae Hyun
    • Journal of Bio-Environment Control
    • /
    • v.29 no.3
    • /
    • pp.285-292
    • /
    • 2020
  • Because the inner environment of greenhouse has a direct impact on crop production, many studies have been performed to develop technologies for controlling the environment in the greenhouse. However, it is difficult to apply the technology developed to all greenhouses because those studies were conducted through empirical experiments in specific greenhouses. It takes a lot of time and cost to develop the models that can be applicable to all greenhouse in real situation. Therefore studies are underway to solve this problem using computer-based simulation techniques. In this study, a model was developed to predict the inner environment of glass greenhouse using CFD simulation method. The developed model was validated using primary and secondary heating experiment and daytime greenhouse inner temperature data. As a result of comparing the measured and predicted value, the mean temperature and uniformity were 2.62℃ and 2.92%p higher in the predicted value, respectively. R2 was 0.9628, confirming that the measured and the predicted values showed similar tendency. In the future, the model needs to improve by applying the shape of the greenhouse and the position of the inner heat exchanger for efficient thermal energy management of the greenhouse.

A Study on the Influence of Urban Environment on the Generation of Thermal Diseases (도시 환경이 온열질환 발생에 미치는 영향에 관한 연구)

  • Lee, Su-Mi;Kweon, Ihl;Kim, Yong-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.12
    • /
    • pp.84-92
    • /
    • 2019
  • The deterioration of the urban heat environment due to climate change and the occurrence of heat-related diseases have emerged as one of the major social problems. This has led to more research on climate change, including heat waves, but it is mainly focused on climate factors. However, the urban heat island phenomenon accelerates the summer heat wave, and the increasing trend of heat-related patients in urban areas suggests the impact of the city's environment. Thus, this study analyzed the effects of physical and social characteristics of urban areas on heat-related patients in Seoul and Gyeonggi-do. The analysis showed that the ratio of the total area of residential, commercial and industrial facilities, the main source of heat energy locality, among the land use statuses, was not statistically significant, but the road area and the green area were found to have a positive and negative The population density and the percentage of people aged 65 or older, the percentage of people living alone and the proportion of people receiving basic living were all shown to be significant, with only the ratio of elderly living alone and the ratio of population density having negative effects. The results of the study can be used to develop urban policy alternatives related to local warming patients.

A Study on the Utilization of potential heat sources for Heat Pumps to District Heating System in Urban (도시 내 지역난방 Heat Pump용 잠재열원 이용에 관한 연구)

  • Oh, Kwang Min;Kim, Lae Hyun
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.841-855
    • /
    • 2018
  • The purpose of this study is to estimate the available potential heat source for heat pump in the district heating supply area in the city. Unused energy potentials were estimated and integrated based on open source based data. In particular, geographical spatial analysis of recoverable heat energy density and heat demand in the heat source area of large retailers and public sauna facilities in the DH network located in the southern part of the metropolitan area (Pyeongtaek-si) was conducted. As a result of the study, the DH network area had a total potential energy of 1,741.7 toe/year for the two heat sources of large retailers and public saunas. It is estimated that 1,006.9 toe/year, which is 57.8% of the total, can be linked to the district heating. The large retailers showed a positive correlation with the floor area and energy use of 0.4937. The recoverable energy intensity was estimated to be $0.0017toe/m^2$ per unit area and $0.0069tCO_2/m^2$ for greenhouse gas emissions. In addition, public saunas were analyzed by comparing the empirical case with the theoretical calculation, and it was estimated that energy conservation estimate of 80% was $0.0315toe/m^2$ per bath area and $0.1183tCO_2/m^2$ for greenhouse gas emissions. The total potential energy amount of this area was positively correlated with the heat demand of apartment house by administrative district, and it was confirmed that it had a relatively high potential energy especially in traffic and commercial center.

The Influence of Ventilation and Shade on the Mean Radiant Temperature of Summer Outdoor (통풍과 차양이 하절기 옥외공간의 평균복사온도에 미치는 영향)

  • Lee, Chun-Seok;Ryu, Nam-Hyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.5
    • /
    • pp.100-108
    • /
    • 2012
  • The purpose of the study was to evaluate the influence of shading and ventilation on Mean Radiant Temperature(MRT) of the outdoor space at a summer outdoor. The Wind Speed(WS), Air Temperature(AT) and Globe Temperature(GT) were recorded every minute from $1^{st}$ of May to the $30^{th}$ of September 2011 at a height of 1.2m above in four experimental plots with different shading and ventilating conditions, with a measuring system consisting of a vane type anemometer(Barini Design's BDTH), Resistance Temperature Detector(RTD, Pt-100), standard black globe(${\O}$ 150mm) and data acquisition systems(National Instrument's Labview and Compfile Techs' Moacon). To implement four different ventilating and shading conditions, three hexahedral steel frames, and one natural plot were established in the open grass field. Two of the steel frames had a dimension of $3m(W){\times}3m(L){\times}1.5m(H)$ and every vertical side covered with transparent polyethylene film to prevent lateral ventilation(Ventilation Blocking Plot: VP), and an additional shading curtain was applied on the top side of a frame(Shading and Ventilation Blocking Plot: SVP). The third was $1.5m(W){\times}1.5m(L){\times}1.5m(H)$, only the top side of which was covered by the shading curtain without the lateral film(Shading Plot: SP). The last plot was natural condition without any kind of shading and wind blocking material(Natural Open Plot: NP). Based on the 13,262 records of 44 sunny days, the time serial difference of AT and GT for 24 hour were analyzed and compared, and statistical analysis was done based on the 7,172 records of daytime period from 7 A.M. to 8 P.M., while the relation between the MRT and solar radiation and wind speed was analyzed based on the records of the hottest period from 11 A.M. to 4 P.M.. The major findings were as follows: 1. The peak AT was $40.8^{\circ}C$ at VP and $35.6^{\circ}C$ at SP showing the difference about $5^{\circ}C$, but the difference of average AT was very small within${\pm}1^{\circ}C$. 2. The difference of the peak GT was $12^{\circ}C$ showing $52.5^{\circ}C$ at VP and $40.6^{\circ}C$ at SP, while the gap of average GT between the two plots was $6^{\circ}C$. Comparing all four plots including NP and SVP, it can be said that the shading decrease $6^{\circ}C$ GT while the wind blocking increase $3^{\circ}C$ GT. 3. According to the calculated MRT, the shading has a cooling effect in reducing a maximum of $13^{\circ}C$ and average $9^{\circ}C$ MRT, while the wind blocking has heating effect of increasing average $3^{\circ}C$ MRT. In other words, the MRT of the shaded area with natural ventilation could be cooler than the wind blocking the sunny site to about $16^{\circ}C$ MRT maximum. 4. The regression and correlation tests showed that the shading is more important than the ventilation in reducing the MRT, while both of them do an important role in improving the outdoor thermal comfort. In summary, the results of this study showed that the shade is the first and the ventilation is the second important factor in terms of improving outdoor thermal comfort in summer daylight hours. Therefore, it can be apparently said that the more shade by the forest, shading trees etc., the more effective in conditioning the microclimate of an outdoor space reducing the useless or even harmful heat energy for human activities. Furthermore, the delicately designed wind corridor or outdoor ventilation system can improve even the thermal environment of urban area.