DOI QR코드

DOI QR Code

Development and Validation of Inner Environment Prediction Model for Glass Greenhouse using CFD

CFD를 이용한 유리온실 내부 환경 예측 모델 개발 및 검증

  • Jeong, In Seon (Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon national university) ;
  • Lee, Chung Geon (Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon national university) ;
  • Cho, La Hoon (Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon national university) ;
  • Park, Sun Yong (Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon national university) ;
  • Kim, Min Jun (Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon national university) ;
  • Kim, Seok Jun (Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon national university) ;
  • Kim, Dae Hyun (Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon national university)
  • 정인선 (강원대학교 농업생명과학대학 바이오시스템공학과 대학원) ;
  • 이충건 (강원대학교 농업생명과학대학 바이오시스템공학과 대학원) ;
  • 조라훈 (강원대학교 농업생명과학대학 바이오시스템공학과 대학원) ;
  • 박선용 (강원대학교 농업생명과학대학 바이오시스템공학과 대학원) ;
  • 김민준 (강원대학교 농업생명과학대학 바이오시스템공학과 대학원) ;
  • 김석준 (강원대학교 농업생명과학대학 바이오시스템공학과 대학원) ;
  • 김대현 (강원대학교 농업생명과학대학 바이오시스템공학과)
  • Received : 2020.03.20
  • Accepted : 2020.06.30
  • Published : 2020.07.30

Abstract

Because the inner environment of greenhouse has a direct impact on crop production, many studies have been performed to develop technologies for controlling the environment in the greenhouse. However, it is difficult to apply the technology developed to all greenhouses because those studies were conducted through empirical experiments in specific greenhouses. It takes a lot of time and cost to develop the models that can be applicable to all greenhouse in real situation. Therefore studies are underway to solve this problem using computer-based simulation techniques. In this study, a model was developed to predict the inner environment of glass greenhouse using CFD simulation method. The developed model was validated using primary and secondary heating experiment and daytime greenhouse inner temperature data. As a result of comparing the measured and predicted value, the mean temperature and uniformity were 2.62℃ and 2.92%p higher in the predicted value, respectively. R2 was 0.9628, confirming that the measured and the predicted values showed similar tendency. In the future, the model needs to improve by applying the shape of the greenhouse and the position of the inner heat exchanger for efficient thermal energy management of the greenhouse.

본 연구에서는 CFD 시뮬레이션 기법을 이용하여 유리온실의 내부 환경 변화를 예측하는 모델을 개발하였으며, 실험을 통해 확보한 데이터를 이용하여 이를 검증하였다. 주·야간 실험 데이터를 경계조건으로 하는 Case 1, 2, 3의 시뮬레이션 예측값은 실험값 대비 평균 2.62℃ 높게 나타났으며, 최대편차와 균일도는 각각 평균 1.12℃, 2.92%p 높게 나타났다. Case 1에서 Case 3으로 외기온도가 변화함에 따라 조성되는 온실 내부 온도는 평균 0.84℃의 차이를 보였으며, R2는 0.9628로 실험값과 시뮬레이션 예측값 간 유사한 경향을 보임을 확인하였다. 시뮬레이션 예측 결과 해석대상 온실 내 불균일한 온도분포를 확인하였다. 해석대상 온실의 효율적인 열에너지 관리를 위해 온실 내 방열관과 FCU의 위치 변경, 온실 구조 변경 등이 필요하다고 판단되었다. 추후 현장에서의 적용을 위해 정밀한 분석이 필요하며 이를 위해 온실 내부 작물 및 구조물 미고려, 온실을 완전 밀폐로 가정하는 등 모델 정립을 위한 조건들에 의한 열전달 현상을 고려한 모델의 개선이 필요하다고 판단된다.

Keywords

References

  1. Ansys Inc., ANSYS FLUENT 19.1 User's Guide, 2019.
  2. Ansys Inc., ANSYS FLUENT 19.1 Theory Guide, 2019.
  3. Ansys Inc., FLUENT UDF Manual, 2019.
  4. Fatnassi, H., C. Poncet, M.M. Bazzano, R. Brun, and N. Bertin. 2015. A numerical simulation of the photovoltaic greenhouse microclimate. Solar Energy. 120:575-584. https://doi.org/10.1016/j.solener.2015.07.019
  5. Hong, S.W. and I.B. Lee, 2014. Predictive Model of Micro-Environment in a Naturally Ventilated Greenhouse for a Model-Based Control Approach. Protected Horticulture and Plant Factory. 23:181-191 (in Korean). https://doi.org/10.12791/KSBEC.2014.23.3.181
  6. Kim, H.S. 2001. Prediction of Cooling Effect for Fog Cooling System in Greenhouse by CFD Simulation. Master Diss., Seoul National Univ., Seoul (in Korean).
  7. Kang, Y.K., Y.B. Lee, J.H. Lee, and Y.S. Ryou, 2005. Performance of Geothermal Heat Pump for Greenhouse Heating and Cooling. Journal of Bio-Environment Control. 14:178-184 (in Korean).
  8. Kang, D.H., S.Y. Lee, J.E. Son, I.B. Lee, and S.W. Nam, 2015. Design Standards for Greenhouse Environment. National Institute of Agricultural Sciences (in Korean).
  9. Kim, H.N. 2016. Analysis of Heating Effect by Using Heat Pump and Surplus Solar Energy in Glass Greenhouse. Master Diss., Gyeongsang National Univ., Seoul National Univ., Jinju (in Korean).
  10. Kwon, J.K., J.G. Jeon, S.H. Kim, and H.G. Kim, 2016. Application Effect of Heating Energy Saving Package on Venlo Type Glasshouse of Paprika Cultivation. Protected Horticulture and Plant Factory. 25:225-231 (in Korean). https://doi.org/10.12791/KSBEC.2016.25.4.225
  11. Lee, Y.B., H.J. Jeon, and J. E. Son, 2010. Facility horticulture. Hyangmunsa (in Korean).
  12. Ministry of Agriculture, Food and Rural Affairs. 2019(a). 2018 Facility vegetables Greenhouse status and vegetable production performance (in Korean).
  13. Ministry of Agriculture, Food and Rural Affairs. 2019(b). 2018 Flower culture status (in Korean).
  14. Nam, S.W. and Y.S. Kim, 2009. Analysis on the Uniformity of Temperature and Humidity According to Environment Control in Tomato Greenhouses. Protected Horticulture and Plant Factory. 18:215-224 (in Korean).
  15. Tadj, N., T.D. Bartzanas, Fidaros, B. Draoui, and C. Kittas, 2010. Influence of Heating System on Greenhouse Microclimate Distribution. Transactions of the ASABE 53:225-238. https://doi.org/10.13031/2013.29498
  16. Yu, I.H., N.K. Yun, M.W. Cho, H.R. Ryu, and D.G. Moon, 2014. Development of CFD model for analyzing the air flow and temperature distribution in greenhouse with air-circulation fans. CNU Journal of Agricultural Science. 41:461-472 (in Korean).