• Title/Summary/Keyword: 미세 초음파가공

Search Result 54, Processing Time 0.032 seconds

Fabrication of Glass Microstructure Using Laser-Induced Backside Wet Etching (레이저 습식 후면 식각공정을 이용한 미세 유리 구조물 제작)

  • Kim, Bo Sung;Park, Min Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.967-972
    • /
    • 2014
  • The good light permeability and hardness of glass allow it to be used in various fields. Non-conventional machining methods have been used for glass machining because of its brittle properties. As one non-contact machining method, a laser has advantages that include a high machining speed and the fact that no tool making is required. However, glass has light permeability. Thus, the use of a laser to machine glass has limitations. A nanosecond pulse laser can be used at low power for laser-induced backside wet etching, which is an indirect method. In previous studies, a short-wave laser that had good light absorption but a high price was used. In this study, a near-infrared laser was used to test the possibility of glass micro-machining. In particular, when deeper machining was conducted on a glass structure, more problems could result. To solve these problems, microstructure manufacturing was conducted using ultrasonic vibration.

Bubble Growth Analysis in Ultrasonic Foaming using Reaction Injection Molding (반응사출 성형을 이용한 초음파 발포시 기포성장해석)

  • 김찬중
    • The Korean Journal of Rheology
    • /
    • v.7 no.3
    • /
    • pp.237-249
    • /
    • 1995
  • 폴리우레탄 미세포 포움의 가공에 대한 연구를 수행하였으며 기체 과포화 수지 내 의 핵생성율을 증진시키기 위하여 폴리올과 이소시아네이트의 혼합물에 초음파 가진을 적용 하였다. 미세포 구조는 고압에서 질소 가스로 폴리올을 과포화ㅣ키고 폴리우레탄의 두 성분 을 충돌혼합시킨 직후 초음파에 의해 기포를 생성시켜 이루어진다. 낮은 포화 압력에서 질 소에 의해 포화된수지의 핵생성율을 증가시키기위하여 초음파 가진을 적용하였다. 확산에 의해 기포의 성장이 조절된다고 가정하고 금형이 충전되는 동안에 금형 내부에서의 기포성 장기구를 이해하기 위하여 수치적인 방법으로 이론적 연구를 수행하였다. 경화 시간과 확산 경계를 고려하여 최종적인 기포의 크기를 계산하였으며 반응속도론을 고려하여 중합반응 동 안의 폴리우레탄의 점도의 변화를 예측하고 경화 시간을 결정하였다. 이론적 및 실험적으로 결정된 기포의 수를 기준으로 하여 확산 경계를 예측하였다.

  • PDF

A study on micro grooving characteristics of planar lightwave circuit and glass using ultrasonic vibration cutting (초음파 진동절삭을 이용한 평면 광도파로와 유리의 미세 홈 가공특성에 관한 연구)

  • 이준석;김병국;정융호;이득우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.167-172
    • /
    • 2002
  • Recent years, optical components'are widely used in optical communication industry for high speed and mass storage data processing. Micro grooving of planar lightwave circuit and glass, those are widely used in optical component, are realized by polycrystalline diamond tool with ultrasonic vibration. To know the characteristics of brittle materials cutting, ultrasonic vibration cutting tool and machining system are built for the experiment. Grooving on planar lightwave circuit and glass experiments are performed and their shape are measured by photograph with microscope. It reveals that better groove shape with low chipping of planar lightwave circuit and glass are obtained by micro grooving machining with ultrasonic vibration. These experiments are considered as a possibility to the micro grooving of optical communication components.

  • PDF

A Study on Preventing Cracks at the Small Hole Exit in Ultrasonic Machining Using a Wax Coating (초음파 미세구멍 관통가공에서 왁스 코팅을 이용한 출구크랙 방지에 관한 연구)

  • Li, Hang;Ko, Tae Jo;Baek, Dae Kyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.105-111
    • /
    • 2015
  • Ultrasonic machining (USM) does not involve heating or any electrochemical effects, and subsequently causes low surface damage, has small residual stress, and does not rely on the conductivity of the workpiece. These characteristics are suitable for the machining of brittle materials, such as glass or ceramics. However, USM for brittle materials generates cracks on the workpiece while machining, especially at the hole exit with a small diameter. In this study, wax coating was used to deposit wax on the back side of the workpiece to decrease the occurrence of cracks at the exit holes in USM, and it was finally removed with a cleaning process. The experimental results show that this technique is beneficial for restricting the occurrence of cracks in glass or ceramics.

반응사출성형시 초음파 발포의 응용에 관한 연구

  • 조우종;박혁;윤재륜
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.94-98
    • /
    • 1992
  • 낮은 점도를 갖는 단위체(monomer)나 반응성이 있는 올리고머(oligomer)를 이용한 생산속도가빠른 반응사출성형(reaction injection molding)은 일반적인 열가소성 고분자 재료의 사출성형(thermoplastic modding)에 비하여 기계 설비비용을 상당 히 감소시킬 수 있는 장점을 갖으며, 매우 크고 복잡한 형태의 제품을 가공하기가 용이하고, 특히짧은 가공주기(cycle time) 에 부합하는 금형 내에서의 빠른 종합반응이 특징이다. 본 연구는 반응사출성형용 폴리우레탄을 이용한 미세포 포옴의 가공 시 초음파 가진의 영향에대한 이론적 해석과 반응사출 성형을 모사할 수 있는 실험장치에의해 가공되어지는 시편의 파단면을 전자주사현미경에 의해 관찰함으로써 기포의 크기를 조절할 수 있는 가능성에 대한 고찰이 목적이다.

Development of Ultra-precision Ultrasonic Surface Machining Device Using Cyclic Elliptical Cutting Motion of a Couple of Piezoelectric Material (압전소자의 미세회전운동을 이용한 초정밀 초음파 표면가공기 개발)

  • Kim, Gi-Dae;Loh, Byung-Gook;Kim, Jeong-Su
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.3
    • /
    • pp.29-35
    • /
    • 2006
  • Various types of elliptical motions are generated by PZT mechanism which is composed of two parallel piezoelectric actuators. Elliptical vibration cutting(EVC) is obtained by attaching single crystal diamond cutting tool to the mechanism, and V-grooving for Brass and Aluminum is carried out by applying the EVC. It is experimentally observed that the cutting force in the process of the EVC reduces compared to the ordinary non-vibration cutting, which is due to the decrease of undeformed chip thickness and frictional force between the tool and chip. Ultrasonic elliptical vibration cutting(UEVC) suppresses burr formation and decreases cutting force still more, so UEVC makes it possible to enhance the shape accuracy of machined surface.

  • PDF

A Study on the Ultrasonic Micro-machining and Measurement System (초음파 초정밀 가공 및 측정시스템에 대한 연구)

  • Ju, Jong-Nam;Han, Dong-Cheol;Park, Hui-Jae;Park, Sang-Sin;Je, Seong-Uk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.7
    • /
    • pp.133-140
    • /
    • 2002
  • Ultrasonic Machining (USM) is widely used in cutting of non-conductive, brittle workpiece materials such as engineering ceramics. However, USM has a limitation in its application to micro machining because problems are occurred in attaching micro tools to the machine and maintaining high precision. Therefore Micro Ultrasonic Machining (MUSM) with WEDM is proposed in this research. The experiments are produced as the change of shaft diameter and abrasive size.

Micro-machining of Glasses using Chemical-assisted Ultrasonic Machining (화학적 초음파가공을 이용한 유리의 미세가공)

  • 전성건;신용주;김병희;김헌영;전병희
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.12
    • /
    • pp.2085-2091
    • /
    • 2003
  • An ultrasonic machining process has been known as efficient and economical means fer precision machining of glass or ceramic materials. However, because of its complexity, the mechanism of the machining process is still not well understood. Therefore, it is hard to optimize the process parameters effectively. The conventional ultrasonic machining which uses the abrasive slurry only, furthermore, is time-consuming and gives the relatively rough surface. In order to increase the material removal rate and improve the integrity of the machined surface, we have introduced the novel ultrasonic machining technique, Chemical-assisted UltraSonic Machining(CUSM). The desktop-style micro ultrasonic machine has been developed and the z-axis feed is controlled by the constant load control algorithm. To obtain the chemical effects, the low concentration HF(hydrofluoric acid) solution, which erodes glass, added to alumina slurry. Through various experiments and comparison with conventional results, the superiority of CUSM is verified. MRR increases over 200%, the surface roughness is improved and the machining load decreases dramatically.

Micro Ultrasonic Elliptical Vibration Cutting (II) Ultrasonic Micro V-grooving Using Elliptical Vibration Cutting (미세 초음파 타원궤적 진동절삭 (II) 타원진동 절삭운동을 이용한 미세 홈 초음파 가공)

  • Kim Gi Dae;Loh Byoung-Gook;Hwang Kyung-Sig
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.198-204
    • /
    • 2005
  • For precise micro V-grooving, ultrasonic elliptical vibration cutting (UEVC) is proposed using two parallel piezoelectric actuators, which are energized by sinusoidal voltages with a phase difference of 90 degrees. Experimental setup is composed of stacked PZT actuators, a single crystal diamond cutting tool, and a precision motorized xyz stage. It is found that the chip formed in the process of UEVC is discontinuous because of the periodic contacts and non-contacts occurring between the tool and workpiece. It is experimentally observed that the cutting force in the process of UEVC significantly reduces compared to the ordinary non-vibration cutting. In addition, the creation of burr during UEVC is significantly suppressed, which is attributable to the decrease in the specific cutting energy.