• Title/Summary/Keyword: 미세물리적 환경

Search Result 170, Processing Time 0.036 seconds

Study on the Change of Physical Characteristics by Polarity and Additives of SiC DPF Binder for Diesel Engine Application (디젤엔진에 적용하기 위한 SiC DPF용 접합제의 극성 및 첨가물에 따른 물리적 특성 변화에 관한 연구)

  • Kim, Jinwon;Ryu, Younghyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.974-981
    • /
    • 2019
  • Fine dust has become a significant social problem. Diesel engines are used as the main propulsion power source in ships. This study introduces a diesel particulate filter (DPF) that is used as an exhaust after-treatment system for diesel engines to reduce particulate matter known as diesel fine dust. Two materials are used for the DPF: Cordierite and silicon carbide (SiC). In this study, to improve the physical properties of the binder used in the SiC DPF, cordialite was used instead of the SiC-based materials used as the conventional binder to evaluate the thermal durability against high-temperature deformation through the change of the coefficient of thermal expansion. In addition, the physical properties of the silica sol, as a main component of the base coating solution for determining the bond between the binder and the segment, were confirmed. Based on this, the change effect of the binder physical properties was confirmed through experiments by either adding a silane coupling agent or SiC to increase the reactivity of the silica sol.

Ecological studies on Togyo Reservoir in Chulwon, Korea. V. Seasonal Changes of Size-Fractionated Standing Crops and Chlorophyll a of Phytoplankton in Kyungan Stream of Paldang River-Reservoir Systems and Togyo Reservoir, Korea (철원북방 DMZ내의 중영양호 토교저수지의 생태학적 연구 V. 경안천(팔당호)과 토교저수지에서 식물플랑크톤의 크기별 현존량과 Chlorophyll $\alpha$의 계절 변동)

  • Han, Myung-Soo;Lee, Hu-Rang;Hong, Sung-Su;Kim, Young-Ok;Lee, Kyung;Choi, Yong-Keel;Kim, Sewha;Yoo, Kwang-Il
    • Korean Journal of Environmental Biology
    • /
    • v.20 no.1
    • /
    • pp.91-99
    • /
    • 2002
  • With physico-chemical environmental factors such as temperature, DO, pH, conductivity and nutrients, size fractionated of phytoplankton standing crops and chlorophyll a concentrations $(>8\mu{m},\;3-8\mu{m},\;<3\mu{m})$ and their relationships were investigated at each station of Kyungan Stream and Togyo Reservoir from April to November in 1997. The two sampling sites showed different nutrient status: Kyungan Stream was eutrophic, while Togyo Reservoir was mesotrophic. Large sizes of phytoplankton and chl. a were higher in Kyungan Stream, opposite to those of Togyo Reservoir; Standing crops of phytoplankton $(>8\mu{m)$ and chl. a $(3-8\mu{m)}$ were high in Kyung-an Stream, while phytoplankton $(3-8\mu{m)}$and chi. a $(<3\mu{m)$ were abundant in Togyo Reservoir. These results imply that phytoplankton community in the highly eutrophicated water mainly comprised the large filamentous and/or colonial algae, such as Microcystis spp. and Aphanizomenon flos-aquae, which easily enriched by nutrients loading.

A Physical Sequence Estimation Scheme for Passive RFID Tags using Round Trip Scan (왕복 스캔을 통한 수동형 RFID태그의 물리적 순차 추정기법)

  • Lee, Joo-Ho;Kwon, Oh-Heum;Song, Ha-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.11
    • /
    • pp.1358-1368
    • /
    • 2012
  • A tag sequence estimation scheme is to estimate the physical sequence of passive RFID tags that are linearly spread using the movement of a RFID reader. Since RFID readers communicate with the passive tags by very weak radio waves, scanning passive tags are unstable. In this paper, we applied round-trip scanning of a reader to enhance the tag sequence estimation. Proposed scheme first determines the turning point of the reader movement, and then estimates the sequence of the tags using the tag sets scanned in each read cycles. Test experiments show that the proposed scheme can improve the estimation accuracy.

Studies on the Plankton in the southwestern Waters of the East Sea (Sea of Japan) (II) Phytoplankton -Standing crop, nanofraction, and primary production- (東海 西南 海域의 플랑크톤 硏究(II) 식물플랑크톤-현존량, 미세플랑크톤 및 1차 생산-)

  • Shim, Jae-Hyung;Lee, Won-Ho;Park, Sang-Yun
    • 한국해양학회지
    • /
    • v.20 no.3
    • /
    • pp.37-54
    • /
    • 1985
  • A description of the "phytohydrography" in the southwestern waters of the East Sea is given from concurrent measurement of temperature, chlorophyll-a, nutrients, and phytoplankton and also from the calculated primary production during the two cruises in May and October, 1984. Past history of water mass is relatively well reflected in the distribution of phytoplankton species, but such a reflection is rarely shown in the distribution of physical and chemical parameters in general. Upper layer of the waters around Ul-gi and Gampo is typically characterized by the high chlorophyll-a, high primary production, and low nanofraction ratio due to the continuing supply of nutrients from the nutrient-rich cold water underneath. Water of Tsushima current shows poor standing crop in terms of cell numbers and chlorophyll-a concentrations, extremely high nanofraction ratio, and very low primary production. The overwhelming importance of the nanofraction is confirmed in phytoplankton cell numbers, chlorophyll-a concentration, and possibly enough in primary production. This emphasizes the exceptionally strong inflow of warm water into the study area from south among all the waters around the whole Korean peninsula.

  • PDF

Characteristic Evaluation of FA-Based Geopolymer with PLA Fiber (PLA 섬유를 가진 다공성 플라이애시 기반 지오폴리머의 특성 평가)

  • Kwon, Seung-Jun;Hwang, Sang-Hyeon;Cho, Young-Keun;Kim, Tae-Sang;Moon, Eun-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.187-193
    • /
    • 2019
  • Regarding physical absorption mechanism for fine particles(Dust), internal pore-bridging is a major parameter in porous media. In this paper, internal bridging pore system is invented through FA-based geopolymer and incorporated PLA (Polylactic Acid) fiber with biodegradability. With various mix proportions, compressive strength over 20MPa is obtained but PLA is little dissolved in the condition of NaOH 5mole and $30^{\circ}C$ of temperature, which was found that temperature rising accelerates PLA solubility. Within 24hours, beads type PLA is completely dissolved under $90{\sim}130^{\circ}C$ and NaOH 5~12mole of alkali. In room condition, geo-polymerization is limitedly occurs so that the internal pore after PLA dissolution is thought to be effective to absorption and storage of fine particles.

The effects of microplastics on marine ecosystem and future research directions (미세플라스틱의 해양 생태계에 대한 영향과 향후 연구 방향)

  • Kim, Kanghee;Hwang, Junghye;Choi, Jin Soo;Heo, Yunwi;Park, June-Woo
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.4
    • /
    • pp.625-639
    • /
    • 2019
  • Microplastics are one of the substances threatening the marine ecosystem. Here, we summarize the status of research on the effect of microplastics on marine life and suggest future research directions. Microplastics are synthetic polymeric compounds smaller than 5 mm and these materials released into the environment are not only physically small but do not decompose over time. Thus, they accumulate extensively on land, from the coast to the sea, and from the surface to the deep sea. Microplastic can be ingested and accumulated in marine life. Furthermore, the elution of chemicals added to plastic represents another risk. Microplastics accumulated in the ocean affect the growth, development, behavior, reproduction, and death of marine life. However, the properties of microplastics vary widely in size, material, shape, and other aspects and toxicity tests conducted on several properties of microplastics cannot represent the hazards of all other microplastics. It is necessary to evaluate the risks according to the types of microplastic, but due to their variety and the lack of uniformity in research results, it is difficult to compare and analyze the results of previous studies. Therefore, it is necessary to derive a standard test method to estimate the biological risk from different types of microplastics. In addition, while most of the previous studies were conducted mostly on spheres for the convenience of the experiments, they do not properly reflect the reality that fibers and fragments are the main forms of microplastics in the marine environment and in fish and shellfish. Furthermore, studies have been conducted on additives and POPs (persistent organic pollutants) in plastics, but little is known about their toxic effects on the body. The effects of microplastics on the marine ecosystems and humans could be identified in more detail if standard testing methods are developed, microplastics in the form of fibers and fragments rather than spheres are tested, and additives and POPs are analyzed. These investigations will allow us to identify the impact of microplastics on marine ecosystems and humans in more detail.

Ecological Characteristics of the Epiphytes on Seagrass - II. Effects of Physico-chemical Factors on Eelgrass (Zostera marina L.) and Epiphytes (해초에 부착하는 부착생물 군집의 생태학적 특성 - II. 물리화학적 요인이 잘피 및 부착생물에 미치는 영향)

  • Chung, Mi Hee;Youn, Seok-Hyun
    • Korean Journal of Environmental Biology
    • /
    • v.30 no.3
    • /
    • pp.272-279
    • /
    • 2012
  • This was the second study on the ecological characteristics of the epiphytes on seagrass leaf. The objective of this study was to understand the variation of epiphytes on seagrass leaf depending on the change of physico-chemical factors such as salinity, nutrients, and etc. This study showed the four results. 1) The eelgrass growth was influenced by water temperature, suggesting the positive correlation between eelgrass growth and water temperature. 2) The epiphytes growth on seagrass leaves did not show the correlation with water temperature, but negatively correlated with salinity. 3) The eelgrass growth decreased when the concentraion of nitrogen increased. 4) However, loads of epiphytes increased when the concentration of total nitogen (TN), nitrate ($NO_3^-$), and nitrite ($NO_2^-$) were high. This increase of epiphytes growth could be suggested in the cause-effect pathway of nutrient enrichment leading to seagrasses loss.

Manufacture of Iron, Copper and Silver Ions Impregnated Activated Carbon (철, 구리, 은염이 첨착된 활성탄의 제조)

  • Park, Seung-Cho;Choi, Seong-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.384-388
    • /
    • 2006
  • The adsorption ability of polar and toxic substance was greatly enhanced by treating activated carbon with acid solution and impregnating iron, copper, or silver by using in 0.1 M $FeSO_4{\cdot}7H_2O,\;CuSO_4{\cdot}5H_2O,\;AgNO_3$ 300 mL per activated carbon 50 g. Physical and chemical properties of the metal impregnated activated carbons were measured using specific surface area, pore volume and size distribution, scanning eletron microscope(SEM), adsorption isotherm. When activated carbon was treated with acid, the quantity of impregnated metal increased about 1.3 times since the micropores were converted to mesopores or macropores. Both the physical absorption by micropores and chemical absorption by metal ions could be achieved simultaneously with the metal impregnated activated carbon because the capacity of micro pores did not change even after metal ions were impregnated.

A Study on the Extinguishing Performance of Water Mist with Additives (첨가제가 혼합된 미세물분무의 소화성능에 관한 연구)

  • 이경덕;신창섭
    • Fire Science and Engineering
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • Halogen-based fire suppressing agents have environmental problems because they cause the stratospheric ozone depletion and globe warming. Hence, fire suppression system using fine water mist became the center of interest as a substitution of halon. As a study about this, it is in progress to make the optimum droplet size by using water mist nozzles and to improve the extinguishing performance of water mist by using additives. Before this study, the extinguishing time of ethanol and n-heptane pool fire was measured with changing of water mist droplet size, flow density, discharge pressure, and fire size. In this study, on adding the additives to improve physical and chemical extinguishing performance of water mist, the extinguishing performance would evaluate and the optimum condition would find out. As a result, in case of ethanol pan 1 pool fire, the extinguishing time of the water mist by adding of 2.5 wt% NaCl and 0.3% AFFF got shorter 27% and 60% than the pure water mist. Adding of AFFF was to decrease the flame temperature by forming thin film on the fuel surface and to decrease the evaporation of n-heptane fuel. In case of NaCl, alkali salt crystals showed on the flame surface.

Development of a Centrifugal Microreactor for the Generation of Multicompartment Alginate Hydrogel (다중 알긴산 입자제조를 위한 원심력 기반 미세유체 반응기 개발)

  • Ju-Eon, Jung;Kang, Song;Sung-Min, Kang
    • Applied Chemistry for Engineering
    • /
    • v.34 no.1
    • /
    • pp.23-29
    • /
    • 2023
  • Microfluidic reactors have been made to achieve significant development for the generation of new functional materials to apply in a variety of fields. Over the last decade, microfluidic reactors have attracted attention as a user-friendly approach that is enabled to control physicochemical parameters such as size, shape, composition, and surface property. Here, we develop a centrifugal microfluidic reactor that can control the flow of fluid based on centrifugal force and generate multifunctional particles of various sizes and compositions. A centrifugal microfluidic reactor is fabricated by combining microneedles, micro- centrifuge tubes, and conical tubes, which are easily obtained in the laboratory. Depending on the experimental control param- eters, including centrifuge rotation speed, alginate concentration, calcium ion concentration, and distance from the needle to the calcium aqueous solution, this strategy not only enables the generation of size-controlled microparticles in a simple and reproducible manner but also achieves scalable production without the use of complicated skills or advanced equipment. Therefore, we believe that this simple strategy could serve as an on-demand platform for a wide range of industrial and academic applications, particularly for the development of advanced smart materials with new functionalities in biomedical engineering.