• Title/Summary/Keyword: 미사일실험

Search Result 55, Processing Time 0.021 seconds

Effect of Shock Waves on Dynamic Stability of Transonic Missiles (천음속 미사일의 동안정성에 대한 충격파 영향)

  • Park, Su-Hyeong;Gwon, Jang-Hyeok;Heo, Gi-Hun;Byeon, U-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.12-20
    • /
    • 2002
  • Three dimentional unsteady Euler equations are solved and an integration method is presented to predict the dynamic stability derivatives of transonic missiles. Results for the Basic Finner model are compared with several experimental data to vaildate the prediction capability of the present method. The variations of dynamic stability derivatives are discussed with respect to angle of attack, Mach number, and rotation rate. Results show that shock waves between fins enhance the pitch-damping characteristics in transonic region. Results also imply that the Euler equations can give the damping coefficients with comparable accuracy.

Development of a Air-to-Air Missile Simulation Program for the Lethality Evaluation (치사율 평가를 위한 공대공 미사일 모의 발사 프로그램 개발)

  • Sung, Jae-Min;Kim, Byoung-Soo;Shin, Bo-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.288-293
    • /
    • 2010
  • This paper presents to calculate the lethality of missile for the simulation test program and to verify the simulation results. In order to calculate a reliable lethality we need may data and experiments of fuse and warhead, but in reality it is hard to perform a task. Therefore, this paper obtained from the reference paper to analyze the lethality data for the calculation of the lethality. We form the 6 DOF simulation model using the MATLAB/SIMULINK. And formed the autopilot algorithm using the vertical and horizontal acceleration feedback and PNG (Proportional Navigation Guidance) command be used to the guidance algorithm. Finally, we evaluate the results about three cases, front launch, side launch and rear launch to simulate the simulation program, and the target is designed to have a constant speed and direction.

A Feedback-Form of Terminal-Phase Optimal Guidance Law for BTT Missiles Considering Autopilot Dynamics (자동조종장치 동역학을 고려한 궤환 형태의 BTT 미사일용 최적 종말 유도 법칙)

  • Yoo, Seong-Jae;Hong, Jin-Woo;Ha, In-Joong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.3
    • /
    • pp.203-211
    • /
    • 2016
  • In contrast with STT missiles, the guidance law design for BTT missiles should be based on 3-dimensional pursuit kinematics, since the pitch and roll channels of BTT missiles are coupled dynamically. More generally than the prior works, the dynamics of pitch and roll channels, as well as 3-dimensional pursuit kinematics are considered in the design of our terminal-phase optimal guidance law for BTT missiles proposed in this paper. Thereby, the proposed optimal guidance law guarantees high capturability with small miss distance without significant performance degradation due to time-lag effect even in case of relatively slow autopilot dynamics. Moreover, the resulting optimal guidance law is expressed explicitly in feedback-form with the coefficients given as the functions of time-to-go. The effectiveness and practicality of our work is demonstrated through various simulation results.

Heat Transfer and Flow visualization of Supersonic impinging jet (초음속 충돌제트의 유동 가시화 및 열전달 특성)

  • 조용일;김병기;조형희;황기영;배주찬
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.31-31
    • /
    • 2000
  • 초음속 충돌제트(impinging jet)의 열 및 운동량 전달(heat and momentum transfer)은 로켓의 이ㆍ착륙, 다단 로켓의 분리, 로켓의 방향조절을 위해 배기 노즐에 부착되는 제트 베인(jet vane)이나 스포일러 탭(spoiler tab), 수직/단거리 이착륙기의 발진, 미사일 발사시스템, 전투기 동체, 날개, 후미 부분에서 발사되는 미사일의 배기가스가 주변장치 등에 충돌할 때 발생되는 문제점 등을 사전 예측하여 관련장비의 설계 둥에 유용한 자료로 이용된다. 따라서 이에 대한 기초 연구로서 초음속 유동 실험장치를 이용하여 마하수(Mach Number) 1.0 및 1.8인 경우에 대하여 수직/경사평판에서 팽창 비, 거리, 경사각에 따른 충돌 면에서의 단열 벽면온도를 측정하였다. (중략)

  • PDF

A Study on the External Insulation of Missile Surface (미사일 외면의 열 방호 단열재 연구)

  • Park, Byeong-Yeol;Ryoo, Moon-Sam
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.3
    • /
    • pp.53-59
    • /
    • 2006
  • This paper presents the IR-Lamp test results of evaluating heat protection performance and measuring of mechanical/thermal properties in the heat protection material of missile external surface. The results showed that increasing the contents of microballoons improved the heat protection performance, but the mechanical properties were deteriorated. Among the kinds of microballoons, Epoxy/Phenolic Microballoons mixture showed the best mechanical properties and low thermal conductivity. Epoxy/Cork mixture showed the best heat protection in the IR-Lamp test, though it has low mechanical properties and high thermal conductivity.

적외선 우주배경복사 관측실험 II

  • Lee, Dae-Hui
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.25.1-25.1
    • /
    • 2009
  • 적외선 우주배경복사 관측실험 (Cosmic Infrared Background ExpeRiment, CIBER) II는 2009년 2월 25일 화이트샌드 미사일 기지에서 NASA 사운딩 로켓에 탑재, 발사된 CIBER I의 후속 프로젝트이다. 독립적인 Imager 2 대와 Spectrometer 2 대로 구성된 CIBER I과 달리 CIBER II는 하나의 주경과 부경으로 구성된 광학계를 4 대의 Imager가 beam splitter를 이용하여 관측하게 구성되어 있다. CIBER II는 NASA에서 공식적으로 승인되었으며, 한국천문연구원과 한국기초과학지원연구원이 미국 NASA/JPL, Caltech 및 일본 ISAS와 국제 공동으로 개발할 계획이다.

  • PDF

A Study of the Control of Plume-Induced Flow over a Missile Afterbody (Missile Afterbody에서 Plume-Induced Flow의 제어에 관한 연구)

  • ;Young-Ki Lee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.45-48
    • /
    • 2003
  • The plume interference is a complex phenomenon, consisting of plume-induced boundary layer separation, separated shear layer, multiple shock waves, and their interactions. The base knowledge of plume interference effect on powered missiles and flight vehicles is not yet adequate to get an overall insight of the flow physics in plume-freestream flow field. Computational studies are performed to better understand the flow physics of the plume-induced shock and separation for Simple, Rounded, Porous-extension test model configurations. The present study simulates highly underexpanded exhaust plume effect on missile body at the transoni $c^ersonic speeds. In order to investigate the plume-induced separation phenomenon, Simple, Rounded and Porous-extension plate are attacked to the missile afterbody. The computational result shows that the rounded afterbody and the porous-extension wall attached at the missile base can alleviate the plume-induced shock wave and separation phenomenon and improve the control of the missile body.dy.

  • PDF

An External Shape Optimization Study to Maximize the Range of a Guided Missile in Atmospheric Flight (대기권을 비행하는 유도 미사일의 최대 사거리 구현을 위한 외형 형상 최적화 시스템 연구)

  • Yang, Young-Rok;Hu, Sang-Bum;Je, So-Yeong;Park, Chan-Woo;Myong, Rho-Shin;Cho, Tae-Hwan;Hwang, Ui-Chang;Je, Sang-Eon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.6
    • /
    • pp.519-526
    • /
    • 2009
  • This paper describes a research result of a external shape optimization study to maximize the range of the guided missile with canards and tailfins in atmospheric flight. For this purpose, the external shape optimization program which can enhance the range of a missile was developed, incorporated with the trajectory analysis and the optimization technique. In the trajectory analysis part, Missile DATCOM which utilizes the semi-empirical method was directly connected to the trajectory code to supply the aerodynamic coefficients efficiently at every time step. In the gliding flight trajectory after apogee, a maximum $C_L/C_D$ trim condition calculation module was attached under the assumption of the missile continuously flying at maximum $C_L/C_D$ condition. In the optimization part, a Response Surface Method(RSM) was adopted to reduce the computing time.

A Study on the Air to Air Missile Control Fin Optimization Using the Mathematical Modeling Based on the Fluid-Structure Interaction Simulation (수학적 모델링을 이용한 공력-구조 연계 시뮬레이션 기반 공대공 미사일 조종날개 최적화 연구)

  • Lee, Seung-Jin;Park, Jin-Yong
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • This study focuses on the air to air missile control fin planform optimization for the minimizing hinge moment with the considering phenomena of fluid and structure simultaneously. The fluid-structure interaction method is applied for the fluid and structure phenomena simulation of the control fins. A transient-loosely coupled method is used for the fluid-structure interaction simulation because it is suited for using each fluid and structure dedicated simulation software. Searching global optimization point is required many re-calculation therefore in this study, a mathematical model is applied for rapidly calculation. The face centered central composite method is used for generating design points and the 2nd polynomial response surface is sued for generating mathematical model. Global optimization is performed by using the generic algorithm. An objective function is the minimizing travel distance of the center of pressure between Mach 0.7 and 2.0 condition. Finally, the objective function of optimized planform is reduced 7.5% than the baseline planform with satisfying constrained conditions.

Penetration Model in Soil Considering J-hook Trajectory (토양 내 J-hook 궤적을 고려한 침투해석 모델 개발)

  • Sung, Seung-Hun;Ji, Hun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • This study proposes a penetration model in soil considering the wake separation and reattachment based on the integrated force law (IFL). Rigid body dynamics, the IFL, and semi-empirical resistance function about soil are utilized to formulate the motion of the hard projectile. The model can predict the trajectory in soil considering the spherical cavity expansion phenomenon under various oblique angles and angles of attack (AOA). The Mohr-Coulomb yield model is utilized as the resistance function of the soil. To confirm the feasibility of the proposed model, a comparative study is conducted with experimental results described in the open literature. From the comparative study, the penetration depth estimated from the proposed model had about 13.4% error compared to that of the experimental results. In general, the finite element method is widely used to predict the trajectory in soil for a projectile. However, it takes considerable time to construct the computational model for the projectile and perform the numerical simulation. The proposed model only needs to the dimension of the projectile and can predict the trajectory of the projectile in a few seconds.